Fix (stupid) bug from last commit; small refactor
This commit is contained in:
parent
13b0809320
commit
ea64900fef
49
README.md
Normal file
49
README.md
Normal file
@ -0,0 +1,49 @@
|
||||
To-do items, wanted features, bugs:
|
||||
|
||||
- Examples of branching. This will probably need recursion via functions
|
||||
(or an explicit stack some other way).
|
||||
- I need to figure out winding order. It is consistent through seemingly
|
||||
everything, except for reflection and close_boundary_simple.
|
||||
(When there are two parallel boundaries joined with something like
|
||||
join_boundary_simple, traversing these boundaries in their actual order
|
||||
to generate triangles - like in close_boundary_simple - will produce
|
||||
opposite winding order on each. Imagine a transparent clock: seen from the
|
||||
front, it moves clockwise, but seen from the back, it moves
|
||||
counter-clockwise.)
|
||||
- Make it easier to build up meshes a bit at a time?
|
||||
- Factor out recursive/iterative stuff to be a bit more concise
|
||||
- Embed this in Blender?
|
||||
- File that bug that I've seen in trimesh/three.js
|
||||
(see trimesh_fail.ipynb)
|
||||
|
||||
- Parametrize gen_twisted_boundary over boundaries and
|
||||
do my nested spiral
|
||||
- Encode the notions of "generator which transforms an
|
||||
existing list of boundaries", "generator which transforms
|
||||
another generator"
|
||||
- This has a lot of functions parametrized over a lot
|
||||
of functions. Need to work with this somehow.
|
||||
- Work directly with lists of boundaries. The only thing
|
||||
I ever do with them is apply transforms to all of them, or
|
||||
join adjacent ones with corresponding elements.
|
||||
- Why do I get the weird zig-zag pattern on the triangles,
|
||||
despite larger numbers of them? Is it something in how I
|
||||
twist the frames?
|
||||
- How can I compute the *torsion* on a quad? I think it
|
||||
comes down to this: torsion applied across the quad I'm
|
||||
triangulating leading to neither diagonal being a
|
||||
particularly good choice. Subdividing the boundary seems
|
||||
to help, but other triangulation methods (e.g. turning a
|
||||
quad to 4 triangles by adding the centroid) could be good
|
||||
too.
|
||||
- Facets/edges are just oriented the wrong way...
|
||||
- I need an actual example of branching/forking. If I simply
|
||||
split a boundary into sub-boundaries per the rules I already
|
||||
have in my notes, then this still lets me split any way I want
|
||||
to without having to worry about joining N boundaries instead
|
||||
of 2, doesn't it?
|
||||
|
||||
Other notes:
|
||||
- Picking at random the diagonal on the quad to triangulate with
|
||||
does seem to turn 'error' just to noise, and in its own way this
|
||||
is preferable.
|
||||
@ -1,43 +1,5 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To do:\n",
|
||||
"\n",
|
||||
"- Parametrize gen_twisted_boundary over boundaries and\n",
|
||||
"do my nested spiral\n",
|
||||
"- Rewrite ram_horn in terms of newer abstractions\n",
|
||||
"- Encode the notions of \"generator which transforms an\n",
|
||||
"existing list of boundaries\", \"generator which transforms\n",
|
||||
"another generator\"\n",
|
||||
"- Work directly with lists of boundaries. The only thing\n",
|
||||
"I ever do with them is apply transforms to all of them, or\n",
|
||||
"join adjacent ones with corresponding elements.\n",
|
||||
"- Why do I get the weird zig-zag pattern on the triangles,\n",
|
||||
"despite larger numbers of them? Is it something in how I\n",
|
||||
"twist the frames?\n",
|
||||
" - How can I compute the *torsion* on a quad? I think it\n",
|
||||
" comes down to this: torsion applied across the quad I'm\n",
|
||||
" triangulating leading to neither diagonal being a\n",
|
||||
" particularly good choice. Subdividing the boundary seems\n",
|
||||
" to help, but other triangulation methods (e.g. turning a\n",
|
||||
" quad to 4 triangles by adding the centroid) could be good\n",
|
||||
" too.\n",
|
||||
" - Facets/edges are just oriented the wrong way...\n",
|
||||
"- I need an actual example of branching/forking. If I simply\n",
|
||||
"split a boundary into sub-boundaries per the rules I already\n",
|
||||
"have in my notes, then this still lets me split any way I want\n",
|
||||
"to without having to worry about joining N boundaries instead\n",
|
||||
"of 2, doesn't it?\n",
|
||||
"\n",
|
||||
"Other notes:\n",
|
||||
"- Picking at random the diagonal on the quad to triangulate with\n",
|
||||
" does seem to turn 'error' just to noise, and in its own way this\n",
|
||||
" is preferable. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
@ -50,6 +12,7 @@
|
||||
"import random\n",
|
||||
"\n",
|
||||
"import meshutil\n",
|
||||
"import meshgen\n",
|
||||
"import examples"
|
||||
]
|
||||
},
|
||||
|
||||
115
examples.py
115
examples.py
@ -1,10 +1,12 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import meshutil
|
||||
import stl.mesh
|
||||
import numpy
|
||||
import trimesh
|
||||
|
||||
import meshutil
|
||||
import meshgen
|
||||
|
||||
# I should be moving some of these things out into more of a
|
||||
# standard library than an 'examples' script
|
||||
|
||||
@ -59,7 +61,7 @@ def ram_horn():
|
||||
def ram_horn_gen(b, xf):
|
||||
while True:
|
||||
b1 = xf.apply_to(b)
|
||||
yield b1
|
||||
yield [b1]
|
||||
incr = meshutil.Transform() \
|
||||
.scale(0.9) \
|
||||
.rotate([-1,0,1], 0.3) \
|
||||
@ -76,7 +78,8 @@ def ram_horn2():
|
||||
xf0_to_1 = meshutil.Transform().translate(0,0,1)
|
||||
b1 = xf0_to_1.apply_to(b0)
|
||||
meshes = []
|
||||
#meshes.append(meshutil.join_boundary_simple(b0, b1))
|
||||
meshes.append(meshutil.join_boundary_simple(b0, b1))
|
||||
meshes.append(meshutil.close_boundary_simple(b0))
|
||||
for i in range(4):
|
||||
# Opening boundary:
|
||||
xf = meshutil.Transform() \
|
||||
@ -84,13 +87,9 @@ def ram_horn2():
|
||||
.scale(0.5) \
|
||||
.translate(0.25,0.25,1) \
|
||||
.rotate([0,0,1], i*numpy.pi/2)
|
||||
b = xf.apply_to(b1)
|
||||
gen = ram_horn_gen(b, xf)
|
||||
mesh = gen2mesh(gen, count=128)
|
||||
print(mesh)
|
||||
gen = ram_horn_gen(b1, xf)
|
||||
mesh = meshgen.gen2mesh(gen, count=128, close_last=True)
|
||||
meshes.append(mesh)
|
||||
# Close final boundary:
|
||||
meshes.append(meshutil.close_boundary_simple(b_sub1[::-1,:]))
|
||||
mesh = meshutil.FaceVertexMesh.concat_many(meshes)
|
||||
return mesh
|
||||
|
||||
@ -161,103 +160,19 @@ def twist_nonlinear(dx0 = 2, dz=0.2, count=3, scale=0.99, layers=100):
|
||||
mesh = meshutil.FaceVertexMesh.concat_many(meshes)
|
||||
return mesh
|
||||
|
||||
# Generate a frame with 'count' boundaries in the XZ plane.
|
||||
# Each one rotates by 'ang' as it moves by 'dz'.
|
||||
# dx0 is center-point distance from each to the origin.
|
||||
def gen_twisted_boundary(count=4, dx0=2, dz=0.2, ang=0.1):
|
||||
b = numpy.array([
|
||||
[0, 0, 0],
|
||||
[1, 0, 0],
|
||||
[1, 0, 1],
|
||||
[0, 0, 1],
|
||||
], dtype=numpy.float64) - [0.5, 0, 0.5]
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
# Generate 'seed' transformations:
|
||||
xfs = [meshutil.Transform().translate(dx0, 0, 0).rotate([0,1,0], numpy.pi * 2 * i / count)
|
||||
for i in range(count)]
|
||||
# (we'll increment the transforms in xfs as we go)
|
||||
while True:
|
||||
xfs_new = []
|
||||
bs = []
|
||||
for i, xf in enumerate(xfs):
|
||||
# Generate a boundary from running transform:
|
||||
b_i = xf.apply_to(b)
|
||||
bs.append(b_i)
|
||||
# Increment transform i:
|
||||
xf2 = xf.rotate([0,1,0], ang)
|
||||
xfs_new.append(xf2)
|
||||
xfs = xfs_new
|
||||
yield bs
|
||||
|
||||
# This is to see how well it works to compose generators:
|
||||
def gen_inc_y(gen, dy=0.1):
|
||||
xf = meshutil.Transform()
|
||||
for bs in gen:
|
||||
bs2 = [xf.apply_to(b) for b in bs]
|
||||
yield bs2
|
||||
xf = xf.translate(0, dy, 0)
|
||||
|
||||
# Wrap a boundary generator around a (sorta) torus that is along XY.
|
||||
# producing a mesh.
|
||||
# 'frames' sets resolution, 'rad' sets radius (the boundary's origin
|
||||
# sweeps through this radius - it's not 'inner' or 'outer' radius).
|
||||
#
|
||||
# generator should produce lists of boundaries which are oriented
|
||||
# roughly in XZ. This will get 'frames' elements from it if
|
||||
# possible.
|
||||
def gen_torus_xy(gen, rad=2, frames=100):
|
||||
ang = numpy.pi*2 / frames
|
||||
xf = meshutil.Transform().translate(rad, 0, 0)
|
||||
for i,bs in enumerate(gen):
|
||||
if i >= frames:
|
||||
break
|
||||
bs2 = [xf.apply_to(b) for b in bs]
|
||||
yield bs2
|
||||
xf = xf.rotate([0,0,1], ang)
|
||||
|
||||
# String together boundaries from a generator.
|
||||
# If count is nonzero, run only this many iterations.
|
||||
def gen2mesh(gen, count=0, flip_order=False, loop=False, join_fn=meshutil.join_boundary_optim):
|
||||
# Get first list of boundaries:
|
||||
bs_first = next(gen)
|
||||
bs_last = bs_first
|
||||
# TODO: Begin and end with close_boundary_simple
|
||||
meshes = []
|
||||
for i,bs_cur in enumerate(gen):
|
||||
if count > 0 and i >= count:
|
||||
break
|
||||
for j,b in enumerate(bs_cur):
|
||||
if flip_order:
|
||||
m = join_fn(b, bs_last[j])
|
||||
else:
|
||||
m = join_fn(bs_last[j], b)
|
||||
meshes.append(m)
|
||||
bs_last = bs_cur
|
||||
if loop:
|
||||
for b0,b1 in zip(bs_last, bs_first):
|
||||
if flip_order:
|
||||
m = join_fn(b1, b0)
|
||||
else:
|
||||
m = join_fn(b0, b1)
|
||||
meshes.append(m)
|
||||
mesh = meshutil.FaceVertexMesh.concat_many(meshes)
|
||||
return mesh
|
||||
|
||||
def twist_from_gen():
|
||||
gen = gen_inc_y(gen_twisted_boundary())
|
||||
mesh = gen2mesh(gen, 100, True)
|
||||
gen = meshgen.gen_inc_y(meshgen.gen_twisted_boundary())
|
||||
mesh = meshgen.gen2mesh(gen, 100, True)
|
||||
return mesh
|
||||
|
||||
# frames = How many step to build this from:
|
||||
# turn = How many full turns to make in inner twist
|
||||
# count = How many inner twists to have
|
||||
def twisty_torus(frames = 5000, turns = 4, count = 4, rad = 4):
|
||||
def twisty_torus(frames = 200, turns = 4, count = 4, rad = 4):
|
||||
# In order to make this line up properly:
|
||||
angle = numpy.pi * 2 * turns / frames
|
||||
gen = gen_torus_xy(gen_twisted_boundary(count=count, ang=angle), rad=rad, frames=frames)
|
||||
return gen2mesh(gen, 0, flip_order=True, loop=True)
|
||||
gen = meshgen.gen_torus_xy(meshgen.gen_twisted_boundary(count=count, ang=angle), rad=rad, frames=frames)
|
||||
return meshgen.gen2mesh(gen, 0, flip_order=True, loop=True)
|
||||
|
||||
# frames = How many step to build this from:
|
||||
# turn = How many full turns to make in inner twist
|
||||
@ -265,8 +180,8 @@ def twisty_torus(frames = 5000, turns = 4, count = 4, rad = 4):
|
||||
def twisty_torus_opt(frames = 200, turns = 4, count = 4, rad = 4):
|
||||
# In order to make this line up properly:
|
||||
angle = numpy.pi * 2 * turns / frames
|
||||
gen = gen_torus_xy(gen_twisted_boundary(count=count, ang=angle), rad=rad, frames=frames)
|
||||
return gen2mesh(gen, 0, flip_order=True, loop=True, join_fn=meshutil.join_boundary_optim)
|
||||
gen = meshgen.gen_torus_xy(meshgen.gen_twisted_boundary(count=count, ang=angle), rad=rad, frames=frames)
|
||||
return meshgen.gen2mesh(gen, 0, flip_order=True, loop=True, join_fn=meshutil.join_boundary_optim)
|
||||
|
||||
def main():
|
||||
fns = {
|
||||
|
||||
97
meshgen.py
Normal file
97
meshgen.py
Normal file
@ -0,0 +1,97 @@
|
||||
import meshutil
|
||||
import stl.mesh
|
||||
import numpy
|
||||
import trimesh
|
||||
|
||||
# Generate a frame with 'count' boundaries in the XZ plane.
|
||||
# Each one rotates by 'ang' as it moves by 'dz'.
|
||||
# dx0 is center-point distance from each to the origin.
|
||||
def gen_twisted_boundary(count=4, dx0=2, dz=0.2, ang=0.1):
|
||||
b = numpy.array([
|
||||
[0, 0, 0],
|
||||
[1, 0, 0],
|
||||
[1, 0, 1],
|
||||
[0, 0, 1],
|
||||
], dtype=numpy.float64) - [0.5, 0, 0.5]
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
b = meshutil.subdivide_boundary(b)
|
||||
# Generate 'seed' transformations:
|
||||
xfs = [meshutil.Transform().translate(dx0, 0, 0).rotate([0,1,0], numpy.pi * 2 * i / count)
|
||||
for i in range(count)]
|
||||
# (we'll increment the transforms in xfs as we go)
|
||||
while True:
|
||||
xfs_new = []
|
||||
bs = []
|
||||
for i, xf in enumerate(xfs):
|
||||
# Generate a boundary from running transform:
|
||||
b_i = xf.apply_to(b)
|
||||
bs.append(b_i)
|
||||
# Increment transform i:
|
||||
xf2 = xf.rotate([0,1,0], ang)
|
||||
xfs_new.append(xf2)
|
||||
xfs = xfs_new
|
||||
yield bs
|
||||
|
||||
# This is to see how well it works to compose generators:
|
||||
def gen_inc_y(gen, dy=0.1):
|
||||
xf = meshutil.Transform()
|
||||
for bs in gen:
|
||||
bs2 = [xf.apply_to(b) for b in bs]
|
||||
yield bs2
|
||||
xf = xf.translate(0, dy, 0)
|
||||
|
||||
# Wrap a boundary generator around a (sorta) torus that is along XY.
|
||||
# producing a mesh.
|
||||
# 'frames' sets resolution, 'rad' sets radius (the boundary's origin
|
||||
# sweeps through this radius - it's not 'inner' or 'outer' radius).
|
||||
#
|
||||
# generator should produce lists of boundaries which are oriented
|
||||
# roughly in XZ. This will get 'frames' elements from it if
|
||||
# possible.
|
||||
def gen_torus_xy(gen, rad=2, frames=100):
|
||||
ang = numpy.pi*2 / frames
|
||||
xf = meshutil.Transform().translate(rad, 0, 0)
|
||||
for i,bs in enumerate(gen):
|
||||
if i >= frames:
|
||||
break
|
||||
bs2 = [xf.apply_to(b) for b in bs]
|
||||
yield bs2
|
||||
xf = xf.rotate([0,0,1], ang)
|
||||
|
||||
# String together boundaries from a generator.
|
||||
# If count is nonzero, run only this many iterations.
|
||||
def gen2mesh(gen, count=0, flip_order=False, loop=False,
|
||||
close_first = False,
|
||||
close_last = False,
|
||||
join_fn=meshutil.join_boundary_optim):
|
||||
# Get first list of boundaries:
|
||||
bs_first = next(gen)
|
||||
bs_last = bs_first
|
||||
# TODO: Begin and end with close_boundary_simple
|
||||
meshes = []
|
||||
if close_first:
|
||||
for b in bs_first:
|
||||
meshes.append(meshutil.close_boundary_simple(b))
|
||||
for i,bs_cur in enumerate(gen):
|
||||
if count > 0 and i >= count:
|
||||
break
|
||||
for j,b in enumerate(bs_cur):
|
||||
if flip_order:
|
||||
m = join_fn(b, bs_last[j])
|
||||
else:
|
||||
m = join_fn(bs_last[j], b)
|
||||
meshes.append(m)
|
||||
bs_last = bs_cur
|
||||
if loop:
|
||||
for b0,b1 in zip(bs_last, bs_first):
|
||||
if flip_order:
|
||||
m = join_fn(b1, b0)
|
||||
else:
|
||||
m = join_fn(b0, b1)
|
||||
meshes.append(m)
|
||||
if close_last:
|
||||
for b in bs_last:
|
||||
meshes.append(meshutil.close_boundary_simple(b))
|
||||
mesh = meshutil.FaceVertexMesh.concat_many(meshes)
|
||||
return mesh
|
||||
@ -203,7 +203,7 @@ def subdivide_boundary(bound):
|
||||
b2[2*i+1,:] = mids[i,:]
|
||||
return b2
|
||||
|
||||
def join_boundary_simple(bound1, bound2):
|
||||
def join_boundary_simple(bound1, bound2, random_diag=False):
|
||||
# bound1 & bound2 are both arrays of shape (N,3), representing
|
||||
# the points of a boundary. This joins the two boundaries by
|
||||
# simply connecting quads (made of 2 triangles) straight across.
|
||||
@ -218,7 +218,7 @@ def join_boundary_simple(bound1, bound2):
|
||||
for i in range(n):
|
||||
v0 = i
|
||||
v1 = (i + 1) % n
|
||||
if random.random() < 0.5:
|
||||
if random_diag and random.random() < 0.5:
|
||||
fs[2*i] = [n + v1, n + v0, v0]
|
||||
fs[2*i + 1] = [v1, n + v1, v0]
|
||||
else:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user