prosha/src/examples.rs
2020-03-06 19:15:08 -05:00

442 lines
15 KiB
Rust

use nalgebra::*;
//pub mod examples;
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex};
use crate::rule::{Rule, RuleEval, Child};
use crate::prim;
use crate::util;
struct CurveHorn {
seed: Vec<Vertex>,
id_xform: Mat4,
flip180: Mat4,
incr: Mat4,
}
impl CurveHorn {
fn init() -> CurveHorn {
let y = &Vector3::y_axis();
CurveHorn {
seed: vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
],
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::y_axis(),
std::f32::consts::PI).to_homogeneous(),
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
}
}
fn start(&self) -> RuleEval<Self> {
RuleEval {
geom: OpenMesh {
verts: self.seed.clone(),
faces: vec![],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Self::recur },
xf: self.id_xform,
vmap: vec![0,1,2,3],
},
Child {
rule: Rule { eval: Self::recur },
xf: self.flip180,
vmap: vec![3,2,1,0],
},
],
}
}
fn recur(&self) -> RuleEval<Self> {
let verts = self.seed.clone();
let next_verts: Vec<Vertex> = verts.iter().map(|v| self.incr * v).collect();
let geom = OpenMesh {
verts: next_verts.clone(),
faces: vec![
// The below is just connecting two groups of 4 vertices
// each, straight across and then to the next.
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
// TODO: I should really generate these, not hard-code them.
],
};
// TODO: This could be made slightly nicer by taking it to a peak
// instead of just flattening it in XY, but this is a pretty minor
// change.
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval{
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Self::recur },
xf: self.incr,
vmap: vec![0,1,2,3],
},
],
}
}
}
struct CubeThing {
}
impl CubeThing {
fn init() -> CubeThing {
CubeThing {}
}
fn rec(&self) -> RuleEval<Self> {
let mesh = prim::cube();
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let turns: Vec<Mat4> = vec![
geometry::Transform3::identity().to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
];
let gen_rulestep = |rot: &Mat4| -> Child<Self> {
let m: Mat4 = rot *
Matrix4::new_scaling(0.5) *
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
Child {
rule: Rule { eval: Self::rec },
xf: m,
vmap: vec![],
}
};
RuleEval {
geom: mesh,
final_geom: prim::empty_mesh(),
children: turns.iter().map(gen_rulestep).collect(),
}
}
}
struct RamHorn {
}
impl RamHorn {
fn init() -> RamHorn {
RamHorn{}
}
// Conversion from Python & automata_scratch
fn start(&self) -> RuleEval<Self> {
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
((geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
Matrix4::new_scaling(0.5) *
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
};
RuleEval {
geom: OpenMesh {
verts: vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 1.0), // 8
// 'Bottom' vertices:
vertex(-0.5, -0.5, 0.0), // 9
vertex(-0.5, 0.5, 0.0), // 10
vertex( 0.5, 0.5, 0.0), // 11
vertex( 0.5, -0.5, 0.0), // 12
],
faces: vec![
// bottom face:
Tag::Body(9), Tag::Body(10), Tag::Body(11),
Tag::Body(9), Tag::Body(11), Tag::Body(12),
// two faces straddling edge from vertex 0:
Tag::Body(9), Tag::Body(0), Tag::Body(4),
Tag::Body(9), Tag::Body(7), Tag::Body(0),
// two faces straddling edge from vertex 1:
Tag::Body(10), Tag::Body(1), Tag::Body(5),
Tag::Body(10), Tag::Body(4), Tag::Body(1),
// two faces straddling edge from vertex 2:
Tag::Body(11), Tag::Body(2), Tag::Body(6),
Tag::Body(11), Tag::Body(5), Tag::Body(2),
// two faces straddling edge from vertex 3:
Tag::Body(12), Tag::Body(3), Tag::Body(7),
Tag::Body(12), Tag::Body(6), Tag::Body(3),
// four faces from edge (0,1), (1,2), (2,3), (3,0):
Tag::Body(9), Tag::Body(4), Tag::Body(10),
Tag::Body(10), Tag::Body(5), Tag::Body(11),
Tag::Body(11), Tag::Body(6), Tag::Body(12),
Tag::Body(12), Tag::Body(7), Tag::Body(9),
],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Self::ram_horn },
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rule { eval: Self::ram_horn },
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rule { eval: Self::ram_horn },
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rule { eval: Self::ram_horn },
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
],
}
}
fn ram_horn(&self) -> RuleEval<Self> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
Matrix4::new_scaling(0.9);
let seed = vec![
vertex(-0.5, -0.5, 1.0),
vertex(-0.5, 0.5, 1.0),
vertex( 0.5, 0.5, 1.0),
vertex( 0.5, -0.5, 1.0),
];
let next = seed.iter().map(|v| incr * v).collect();
let geom = OpenMesh {
verts: next,
faces: vec![
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
],
};
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval {
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Self::ram_horn },
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
}
}
struct Twist {
seed: Vec<Vertex>,
seed_sub: Vec<Vertex>,
dx0: f32,
dy: f32,
ang: f32,
count: usize,
subdiv: usize,
}
impl Twist {
pub fn init() -> Twist {
let subdiv = 2;
let seed = vec![
vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5),
];
let seed_sub = util::subdivide_cycle(&seed, subdiv);
Twist {
dx0: 2.0,
dy: 0.1,
ang: 0.1,
count: 4,
seed: seed,
seed_sub: seed_sub,
subdiv: subdiv,
}
}
// Meant to be a copy of twist_from_gen from Python & automata_scratch
pub fn start(&self) -> RuleEval<Twist> {
let n = self.seed_sub.len();
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = &Vector3::y_axis();
let xform = |i| {
(geometry::Rotation3::from_axis_angle(y, qtr * (i as f32)).to_homogeneous() *
geometry::Translation3::new(self.dx0, 0.0, 0.0).to_homogeneous())
};
// First generate 'count' children, each one shifted/rotated
// differently:
let children: Vec<Child<Twist>> = (0..self.count).map(|i| {
let xf = xform(i);
Child {
rule: Rule { eval: Self::recur },
xf: xf,
vmap: (n*i..n*(i+self.count)).collect(), // N.B.
}
}).collect();
// Use byproducts of this to make 'count' copies of 'seed' with
// this same transform:
let mut verts = vec![];
for child in &children {
verts.extend(self.seed_sub.iter().map(|v| child.xf * v));
}
RuleEval {
geom: OpenMesh {
verts: verts,
faces: vec![],
// TODO: Close these initial faces off
},
final_geom: prim::empty_mesh(),
children: children,
}
}
pub fn recur(&self) -> RuleEval<Twist> {
let y = &Vector3::y_axis();
let incr = geometry::Translation3::new(-self.dx0, 0.0, 0.0).to_homogeneous() *
geometry::Rotation3::from_axis_angle(y, self.ang).to_homogeneous() *
geometry::Translation3::new(self.dx0, self.dy, 0.0).to_homogeneous();
let seed_orig = self.seed.iter().map(|v| incr * v).collect();
let seed_sub = util::subdivide_cycle(&seed_orig, self.subdiv);
let n = seed_sub.len();
RuleEval {
geom: OpenMesh {
verts: seed_sub,
faces: util::parallel_zigzag_faces(n),
},
final_geom: prim::empty_mesh(), // TODO: Close properly
children: vec![
Child {
rule: Rule { eval: Self::recur },
xf: incr,
vmap: (0..n).collect(),
},
],
}
}
}
pub fn main() {
{
let vs = vec![
vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5),
];
let vs2 = util::subdivide_cycle(&vs, 2);
println!("vs={:?}", vs);
println!("vs2={:?}", vs2);
}
fn run_test<A>(a: A, r: Rule<A>, iters: u32, name: &str) {
println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh(&a, iters);
println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name);
println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap();
}
fn run_test_iter<A>(a: A, r: Rule<A>, iters: usize, name: &str) {
println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh_iter(&a, iters);
println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name);
println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap();
}
/*
run_test(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing");
// this can't work on its own because the resultant OpenMesh still
// has parent references:
//run_test(Rule { eval: recur }, 100, "curve_horn_thing");
run_test(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2");
run_test(RamHorn::init(), Rule { eval: RamHorn::start }, 200, "ram_horn");
run_test(Twist::init(), Rule { eval: Twist::start }, 200, "twist");
*/
run_test_iter(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing2");
run_test_iter(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2_iter");
run_test_iter(RamHorn::init(), Rule { eval: RamHorn::start }, 100, "ram_horn2");
// TODO: If I increase the above from 100 to ~150, Blender reports
// that the very tips are non-manifold. I am wondering if this is
// some sort of numerical precision issue.
run_test_iter(Twist::init(), Rule { eval: Twist::start }, 200, "twist2");
}