use nalgebra::*; //pub mod examples; use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex}; use crate::rule::{Rule, RuleEval, Child}; use crate::prim; use crate::util; struct CurveHorn { seed: Vec, id_xform: Mat4, flip180: Mat4, incr: Mat4, } impl CurveHorn { fn init() -> CurveHorn { let y = &Vector3::y_axis(); CurveHorn { seed: vec![ vertex(-0.5, -0.5, 0.0), vertex(-0.5, 0.5, 0.0), vertex( 0.5, 0.5, 0.0), vertex( 0.5, -0.5, 0.0), ], id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(), flip180: nalgebra::geometry::Rotation3::from_axis_angle( &nalgebra::Vector3::y_axis(), std::f32::consts::PI).to_homogeneous(), incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() * Matrix4::new_scaling(0.95) * geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(), } } fn start(&self) -> RuleEval { RuleEval { geom: OpenMesh { verts: self.seed.clone(), faces: vec![], }, final_geom: prim::empty_mesh(), children: vec![ Child { rule: Rule { eval: Self::recur }, xf: self.id_xform, vmap: vec![0,1,2,3], }, Child { rule: Rule { eval: Self::recur }, xf: self.flip180, vmap: vec![3,2,1,0], }, ], } } fn recur(&self) -> RuleEval { let verts = self.seed.clone(); let next_verts: Vec = verts.iter().map(|v| self.incr * v).collect(); let geom = OpenMesh { verts: next_verts.clone(), faces: vec![ // The below is just connecting two groups of 4 vertices // each, straight across and then to the next. Tag::Body(1), Tag::Parent(0), Tag::Body(0), Tag::Parent(1), Tag::Parent(0), Tag::Body(1), Tag::Body(2), Tag::Parent(1), Tag::Body(1), Tag::Parent(2), Tag::Parent(1), Tag::Body(2), Tag::Body(3), Tag::Parent(2), Tag::Body(2), Tag::Parent(3), Tag::Parent(2), Tag::Body(3), Tag::Body(0), Tag::Parent(3), Tag::Body(3), Tag::Parent(0), Tag::Parent(3), Tag::Body(0), // TODO: I should really generate these, not hard-code them. ], }; // TODO: This could be made slightly nicer by taking it to a peak // instead of just flattening it in XY, but this is a pretty minor // change. let final_geom = OpenMesh { verts: vec![], faces: vec![ Tag::Parent(0), Tag::Parent(2), Tag::Parent(1), Tag::Parent(0), Tag::Parent(3), Tag::Parent(2), ], }; RuleEval{ geom: geom, final_geom: final_geom, children: vec![ Child { rule: Rule { eval: Self::recur }, xf: self.incr, vmap: vec![0,1,2,3], }, ], } } } struct CubeThing { } impl CubeThing { fn init() -> CubeThing { CubeThing {} } fn rec(&self) -> RuleEval { let mesh = prim::cube(); // Quarter-turn in radians: let qtr = std::f32::consts::FRAC_PI_2; let y = &Vector3::y_axis(); let z = &Vector3::z_axis(); // Each element of this turns to a branch for the recursion: let turns: Vec = vec![ geometry::Transform3::identity().to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(), ]; let gen_rulestep = |rot: &Mat4| -> Child { let m: Mat4 = rot * Matrix4::new_scaling(0.5) * geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous(); Child { rule: Rule { eval: Self::rec }, xf: m, vmap: vec![], } }; RuleEval { geom: mesh, final_geom: prim::empty_mesh(), children: turns.iter().map(gen_rulestep).collect(), } } } struct RamHorn { } impl RamHorn { fn init() -> RamHorn { RamHorn{} } // Conversion from Python & automata_scratch fn start(&self) -> RuleEval { let opening_xform = |i| { let r = std::f32::consts::FRAC_PI_2 * i; ((geometry::Rotation3::from_axis_angle( &nalgebra::Vector3::z_axis(), r).to_homogeneous()) * geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() * Matrix4::new_scaling(0.5) * geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous()) }; RuleEval { geom: OpenMesh { verts: vec![ // 'Top' vertices: vertex(-0.5, -0.5, 1.0), // 0 (above 9) vertex(-0.5, 0.5, 1.0), // 1 (above 10) vertex( 0.5, 0.5, 1.0), // 2 (above 11) vertex( 0.5, -0.5, 1.0), // 3 (above 12) // Top edge midpoints: vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1) vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2) vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3) vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0) // Top middle: vertex( 0.0, 0.0, 1.0), // 8 // 'Bottom' vertices: vertex(-0.5, -0.5, 0.0), // 9 vertex(-0.5, 0.5, 0.0), // 10 vertex( 0.5, 0.5, 0.0), // 11 vertex( 0.5, -0.5, 0.0), // 12 ], faces: vec![ // bottom face: Tag::Body(9), Tag::Body(10), Tag::Body(11), Tag::Body(9), Tag::Body(11), Tag::Body(12), // two faces straddling edge from vertex 0: Tag::Body(9), Tag::Body(0), Tag::Body(4), Tag::Body(9), Tag::Body(7), Tag::Body(0), // two faces straddling edge from vertex 1: Tag::Body(10), Tag::Body(1), Tag::Body(5), Tag::Body(10), Tag::Body(4), Tag::Body(1), // two faces straddling edge from vertex 2: Tag::Body(11), Tag::Body(2), Tag::Body(6), Tag::Body(11), Tag::Body(5), Tag::Body(2), // two faces straddling edge from vertex 3: Tag::Body(12), Tag::Body(3), Tag::Body(7), Tag::Body(12), Tag::Body(6), Tag::Body(3), // four faces from edge (0,1), (1,2), (2,3), (3,0): Tag::Body(9), Tag::Body(4), Tag::Body(10), Tag::Body(10), Tag::Body(5), Tag::Body(11), Tag::Body(11), Tag::Body(6), Tag::Body(12), Tag::Body(12), Tag::Body(7), Tag::Body(9), ], }, final_geom: prim::empty_mesh(), children: vec![ Child { rule: Rule { eval: Self::ram_horn }, xf: opening_xform(0.0), vmap: vec![5,2,6,8], }, Child { rule: Rule { eval: Self::ram_horn }, xf: opening_xform(1.0), vmap: vec![4,1,5,8], }, Child { rule: Rule { eval: Self::ram_horn }, xf: opening_xform(2.0), vmap: vec![7,0,4,8], }, Child { rule: Rule { eval: Self::ram_horn }, xf: opening_xform(3.0), vmap: vec![6,3,7,8], }, // TODO: These vertex mappings appear to be right. // Explain *why* they are right. ], } } fn ram_horn(&self) -> RuleEval { let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0)); let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() * geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() * Matrix4::new_scaling(0.9); let seed = vec![ vertex(-0.5, -0.5, 1.0), vertex(-0.5, 0.5, 1.0), vertex( 0.5, 0.5, 1.0), vertex( 0.5, -0.5, 1.0), ]; let next = seed.iter().map(|v| incr * v).collect(); let geom = OpenMesh { verts: next, faces: vec![ Tag::Body(1), Tag::Parent(0), Tag::Body(0), Tag::Parent(1), Tag::Parent(0), Tag::Body(1), Tag::Body(2), Tag::Parent(1), Tag::Body(1), Tag::Parent(2), Tag::Parent(1), Tag::Body(2), Tag::Body(3), Tag::Parent(2), Tag::Body(2), Tag::Parent(3), Tag::Parent(2), Tag::Body(3), Tag::Body(0), Tag::Parent(3), Tag::Body(3), Tag::Parent(0), Tag::Parent(3), Tag::Body(0), ], }; let final_geom = OpenMesh { verts: vec![], faces: vec![ Tag::Parent(0), Tag::Parent(2), Tag::Parent(1), Tag::Parent(0), Tag::Parent(3), Tag::Parent(2), ], }; RuleEval { geom: geom, final_geom: final_geom, children: vec![ Child { rule: Rule { eval: Self::ram_horn }, xf: incr, vmap: vec![0,1,2,3], }, ], } } } struct Twist { seed: Vec, seed_sub: Vec, dx0: f32, dy: f32, ang: f32, count: usize, subdiv: usize, } impl Twist { pub fn init() -> Twist { let subdiv = 2; let seed = vec![ vertex(-0.5, 0.0, -0.5), vertex( 0.5, 0.0, -0.5), vertex( 0.5, 0.0, 0.5), vertex(-0.5, 0.0, 0.5), ]; let seed_sub = util::subdivide_cycle(&seed, subdiv); Twist { dx0: 2.0, dy: 0.1, ang: 0.1, count: 4, seed: seed, seed_sub: seed_sub, subdiv: subdiv, } } // Meant to be a copy of twist_from_gen from Python & automata_scratch pub fn start(&self) -> RuleEval { let n = self.seed_sub.len(); // Quarter-turn in radians: let qtr = std::f32::consts::FRAC_PI_2; let y = &Vector3::y_axis(); let xform = |i| { (geometry::Rotation3::from_axis_angle(y, qtr * (i as f32)).to_homogeneous() * geometry::Translation3::new(self.dx0, 0.0, 0.0).to_homogeneous()) }; // First generate 'count' children, each one shifted/rotated // differently: let children: Vec> = (0..self.count).map(|i| { let xf = xform(i); Child { rule: Rule { eval: Self::recur }, xf: xf, vmap: (n*i..n*(i+self.count)).collect(), // N.B. } }).collect(); // Use byproducts of this to make 'count' copies of 'seed' with // this same transform: let mut verts = vec![]; for child in &children { verts.extend(self.seed_sub.iter().map(|v| child.xf * v)); } RuleEval { geom: OpenMesh { verts: verts, faces: vec![], // TODO: Close these initial faces off }, final_geom: prim::empty_mesh(), children: children, } } pub fn recur(&self) -> RuleEval { let y = &Vector3::y_axis(); let incr = geometry::Translation3::new(-self.dx0, 0.0, 0.0).to_homogeneous() * geometry::Rotation3::from_axis_angle(y, self.ang).to_homogeneous() * geometry::Translation3::new(self.dx0, self.dy, 0.0).to_homogeneous(); let seed_orig = self.seed.iter().map(|v| incr * v).collect(); let seed_sub = util::subdivide_cycle(&seed_orig, self.subdiv); let n = seed_sub.len(); RuleEval { geom: OpenMesh { verts: seed_sub, faces: util::parallel_zigzag_faces(n), }, final_geom: prim::empty_mesh(), // TODO: Close properly children: vec![ Child { rule: Rule { eval: Self::recur }, xf: incr, vmap: (0..n).collect(), }, ], } } } pub fn main() { { let vs = vec![ vertex(-0.5, 0.0, -0.5), vertex( 0.5, 0.0, -0.5), vertex( 0.5, 0.0, 0.5), vertex(-0.5, 0.0, 0.5), ]; let vs2 = util::subdivide_cycle(&vs, 2); println!("vs={:?}", vs); println!("vs2={:?}", vs2); } fn run_test(a: A, r: Rule, iters: u32, name: &str) { println!("Running {}...", name); let (mesh, nodes) = r.to_mesh(&a, iters); println!("Evaluated {} rules", nodes); let fname = format!("{}.stl", name); println!("Writing {}...", fname); mesh.write_stl_file(&fname).unwrap(); } fn run_test_iter(a: A, r: Rule, iters: usize, name: &str) { println!("Running {}...", name); let (mesh, nodes) = r.to_mesh_iter(&a, iters); println!("Evaluated {} rules", nodes); let fname = format!("{}.stl", name); println!("Writing {}...", fname); mesh.write_stl_file(&fname).unwrap(); } /* run_test(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing"); // this can't work on its own because the resultant OpenMesh still // has parent references: //run_test(Rule { eval: recur }, 100, "curve_horn_thing"); run_test(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2"); run_test(RamHorn::init(), Rule { eval: RamHorn::start }, 200, "ram_horn"); run_test(Twist::init(), Rule { eval: Twist::start }, 200, "twist"); */ run_test_iter(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing2"); run_test_iter(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2_iter"); run_test_iter(RamHorn::init(), Rule { eval: RamHorn::start }, 100, "ram_horn2"); // TODO: If I increase the above from 100 to ~150, Blender reports // that the very tips are non-manifold. I am wondering if this is // some sort of numerical precision issue. run_test_iter(Twist::init(), Rule { eval: Twist::start }, 200, "twist2"); }