Some cleanliness cleanups
This commit is contained in:
parent
45ab4ed9e0
commit
e26b528464
@ -3,13 +3,14 @@
|
||||
## Highest priority:
|
||||
|
||||
- If my `closure_try2` branch seems to be working: start converting
|
||||
other things and cleaning everything up. (`twist` is still ugly.)
|
||||
other things and cleaning everything up. (`twist` is still ugly.
|
||||
Look at all my TODOs in it.)
|
||||
- See `automata_scratch/examples.py` and implement some of the tougher
|
||||
examples.
|
||||
- `spiral_nested_2` & `spiral_nested_3` (how to compose
|
||||
efficiently?)
|
||||
- `twisty_torus`
|
||||
- `ram_horn_branch` - how do I pass depth in order to do this right?
|
||||
- `ram_horn_branch` - Can I pass depth via a closure?
|
||||
|
||||
## Important but less critical:
|
||||
|
||||
|
||||
@ -2,11 +2,10 @@ use std::rc::Rc;
|
||||
use nalgebra::*;
|
||||
//pub mod examples;
|
||||
|
||||
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex, transform};
|
||||
use crate::openmesh::{OpenMesh, Mat4, vertex, transform};
|
||||
use crate::rule::{Rule, RuleFn, RuleEval, Child};
|
||||
use crate::prim;
|
||||
use crate::util;
|
||||
use crate::scratch;
|
||||
|
||||
fn cube_thing() -> Rule {
|
||||
|
||||
@ -369,12 +368,14 @@ fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
// TODO: Clean this code up. It was a very naive conversion from
|
||||
// the non-closure version.
|
||||
let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous();
|
||||
let seed = transform(&vec![
|
||||
vertex(-0.5, 0.0, -0.5),
|
||||
let seed = {
|
||||
let s = vec![vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5),
|
||||
], &xf);
|
||||
vertex(-0.5, 0.0, 0.5)];
|
||||
util::subdivide_cycle(&transform(&s, &xf), subdiv)
|
||||
};
|
||||
let n = seed.len();
|
||||
let dx0: f32 = 1.5;
|
||||
let dy: f32 = 0.1/f;
|
||||
let ang: f32 = 0.05/f;
|
||||
@ -390,23 +391,24 @@ fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
let incr_outer = geometry::Translation3::new(-dx0*2.0, 0.0, 0.0).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(&y, ang/2.0).to_homogeneous() *
|
||||
geometry::Translation3::new(dx0*2.0, dy, 0.0).to_homogeneous();
|
||||
// TODO: Cleanliness fix - transforms?
|
||||
|
||||
let seed2 = seed.clone();
|
||||
// TODO: Why do I need the above?
|
||||
let recur = move |incr: Mat4| -> RuleFn {
|
||||
|
||||
let seed_orig = transform(&seed2, &incr);
|
||||
let seed_sub = util::subdivide_cycle(&seed_orig, subdiv);
|
||||
let n = seed_sub.len();
|
||||
let seed_next = transform(&seed2, &incr);
|
||||
|
||||
// TODO: Cleanliness fix - utility function to make a zigzag mesh?
|
||||
let geom = OpenMesh {
|
||||
verts: seed_sub.clone(),
|
||||
verts: seed_next.clone(),
|
||||
faces: util::parallel_zigzag_faces(n),
|
||||
};
|
||||
let (vc, faces) = util::connect_convex(&seed_sub, true);
|
||||
// TODO: Cleanliness fix - why not just make these return meshes?
|
||||
let (vc, faces) = util::connect_convex(&seed_next, true);
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![vc],
|
||||
faces: faces.clone(),
|
||||
faces: faces,
|
||||
};
|
||||
|
||||
let c = move |self_: Rc<Rule>| -> RuleEval {
|
||||
@ -427,30 +429,30 @@ fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
};
|
||||
Box::new(c)
|
||||
};
|
||||
// TODO: Can a macro do anything to clean up some of the
|
||||
// repetition with HOFs & closures?
|
||||
|
||||
// TODO: so there's incr_inner & incr_outer that I wanted to
|
||||
// parametrize over. why is it so ugly to do so?
|
||||
|
||||
let start = move |self_: Rc<Rule>| -> RuleEval {
|
||||
let start = move |_| -> RuleEval {
|
||||
|
||||
let xform = |dx, i, ang0, div| -> Mat4 {
|
||||
(geometry::Rotation3::from_axis_angle(&y, ang0 + (qtr / div * (i as f32))).to_homogeneous() *
|
||||
geometry::Translation3::new(dx, 0.0, 0.0).to_homogeneous())
|
||||
};
|
||||
// TODO: Cleanliness fix - transforms?
|
||||
|
||||
let make_child = |i, incr, xform| -> (OpenMesh, Child) {
|
||||
|
||||
let seed_orig = transform(&seed, &incr);
|
||||
let seed_sub = util::subdivide_cycle(&seed_orig, subdiv);
|
||||
let n = seed_sub.len();
|
||||
let make_child = |incr, xform| -> (OpenMesh, Child) {
|
||||
|
||||
let c = Child {
|
||||
rule: Rc::new(Rule { eval: (recur.clone())(incr) }),
|
||||
// TODO: Cleanliness fix - can macros clean up above?
|
||||
xf: xform,
|
||||
vmap: (0..(n+1)).collect(),
|
||||
// N.B. n+1, not n. the +1 is for the centroid below
|
||||
// N.B. n+1, not n. the +1 is for the centroid below.
|
||||
};
|
||||
let mut vs = transform(&seed_sub, &xform);
|
||||
let mut vs = transform(&seed, &xform);
|
||||
// and in the process, generate faces for these seeds:
|
||||
let (centroid, f) = util::connect_convex(&vs, false);
|
||||
vs.push(centroid);
|
||||
@ -458,8 +460,8 @@ fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
};
|
||||
|
||||
// Generate 'count' children, shifted/rotated differently:
|
||||
let children_inner = (0..count).map(|i| make_child(i, incr_inner, xform(dx0, i, 0.0, 1.0)));
|
||||
let children_outer = (0..count).map(|i| make_child(i, incr_outer, xform(dx0*2.0, i, qtr/2.0, 2.0)));
|
||||
let children_inner = (0..count).map(|i| make_child(incr_inner, xform(dx0, i, 0.0, 1.0)));
|
||||
let children_outer = (0..count).map(|i| make_child(incr_outer, xform(dx0*2.0, i, qtr/2.0, 2.0)));
|
||||
|
||||
RuleEval::from_pairs(
|
||||
children_inner.chain(children_outer), prim::empty_mesh())
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
pub mod scratch;
|
||||
pub mod examples;
|
||||
pub mod openmesh;
|
||||
pub mod rule;
|
||||
|
||||
297
src/scratch.rs
297
src/scratch.rs
@ -1,297 +0,0 @@
|
||||
use std::rc::Rc;
|
||||
|
||||
/*
|
||||
struct R<'a> {
|
||||
b: &'a dyn Fn() -> R<'a>,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
struct Foo {}
|
||||
impl<'a> Foo {
|
||||
// These are valid, but not especially useful (if I am
|
||||
// transferring ownership then I cannot have any branching):
|
||||
fn fn1(self) -> R<'a> {
|
||||
R { b: & move || self.fn1() }
|
||||
}
|
||||
fn fn2(self) -> R<'a> {
|
||||
R { b: &|| self.fn2() }
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// Below (using box instead of a trait object) follows similar rules:
|
||||
struct S<'a> {
|
||||
b: Box<dyn Fn() -> S<'a>>,
|
||||
}
|
||||
#[derive(Copy, Clone)]
|
||||
struct Foo2 {}
|
||||
impl<'a> Foo2 {
|
||||
fn fn1(self) -> S<'a> {
|
||||
S { b: Box::new(move || self.fn1()) }
|
||||
}
|
||||
// Not valid (error[E0373]: closure may outlive the current
|
||||
// function, but it borrows `self`, which is owned by the current
|
||||
// function):
|
||||
//fn fn2(self) -> S<'a> {
|
||||
// S { b: Box::new(|| self.fn2()) }
|
||||
//}
|
||||
// Not valid:
|
||||
//fn fn3(&self) -> S<'a> {
|
||||
// S { b: Box::new(move || self.fn3()) }
|
||||
//}
|
||||
// Not valid:
|
||||
//fn fn4(&self) -> S<'a> {
|
||||
// S { b: Box::new(|| self.fn4()) }
|
||||
//}
|
||||
}
|
||||
|
||||
struct T<'a> {
|
||||
b: Rc<dyn Fn() -> T<'a> + 'a>,
|
||||
}
|
||||
#[derive(Copy, Clone)]
|
||||
struct Foo3 {}
|
||||
impl<'a> Foo3 {
|
||||
fn fn1(self) -> T<'a> {
|
||||
T { b: Rc::new(move || self.fn1()) }
|
||||
}
|
||||
// Not valid (E0373):
|
||||
//fn fn2(self) -> T<'a> {
|
||||
// T { b: Rc::new(|| self.fn2()) }
|
||||
//}
|
||||
// Not valid:
|
||||
//fn fn3(&self) -> T<'a> {
|
||||
// T { b: Rc::new(move || self.fn3()) }
|
||||
//}
|
||||
// Not valid:
|
||||
//fn fn4(&self) -> T<'a> {
|
||||
// T { b: Rc::new(|| self.fn4()) }
|
||||
//}
|
||||
// But this is now valid because T can be cloned:
|
||||
fn fn5(self) -> (T<'a>, T<'a>) {
|
||||
let p = Rc::new(move || self.fn1());
|
||||
let p2 = p.clone();
|
||||
(T { b: p }, T { b: p2 })
|
||||
}
|
||||
}
|
||||
|
||||
// Further, this is now valid too (lifetimes removed):
|
||||
struct U {
|
||||
b: Rc<dyn Fn() -> U>,
|
||||
}
|
||||
#[derive(Copy, Clone)]
|
||||
struct Foo4 {}
|
||||
impl Foo4 {
|
||||
fn fn1(self) -> U {
|
||||
U { b: Rc::new(move || self.fn1()) }
|
||||
}
|
||||
fn fn5(self) -> (U, U) {
|
||||
let p = Rc::new(move || self.fn1());
|
||||
let p2 = p.clone();
|
||||
(U { b: p }, U { b: p2 })
|
||||
}
|
||||
}
|
||||
|
||||
// I can get rid of Copy/Clone if I use FnOnce:
|
||||
struct V {
|
||||
b: Rc<dyn FnOnce() -> V>,
|
||||
}
|
||||
struct Foo5 {}
|
||||
impl Foo5 {
|
||||
fn fn1(self) -> V {
|
||||
V { b: Rc::new(move || self.fn1()) }
|
||||
}
|
||||
fn fn2(self) -> (V, V) {
|
||||
let p = Rc::new(move || self.fn1());
|
||||
let p2 = p.clone();
|
||||
(V { b: p }, V { b: p2 })
|
||||
}
|
||||
// and then either kind is fine:
|
||||
fn fn3(self) -> V {
|
||||
V { b: Rc::new(|| self.fn3()) }
|
||||
}
|
||||
fn fn4(self) -> (V, V) {
|
||||
let p = Rc::new(|| self.fn3());
|
||||
let p2 = p.clone();
|
||||
(V { b: p }, V { b: p2 })
|
||||
// but this confuses me a bit. doesn't this then let me call
|
||||
// an FnOnce... more than once?
|
||||
}
|
||||
}
|
||||
|
||||
// This is valid and I can recurse:
|
||||
struct W {
|
||||
b: Box<dyn Fn() -> W>,
|
||||
}
|
||||
struct Foo6 {}
|
||||
impl Foo6 {
|
||||
fn fn1(s: &Rc<Self>) -> W {
|
||||
let s2 = Rc::clone(&s);
|
||||
W { b: Box::new(move || Self::fn1(&s2)) }
|
||||
}
|
||||
fn fn2(s: &Rc<Self>) -> (W, W) {
|
||||
let s2 = Rc::clone(&s);
|
||||
let w2 = W { b: Box::new(move || Self::fn1(&s2)) };
|
||||
let s3 = Rc::clone(&s);
|
||||
let w3 = W { b: Box::new(move || Self::fn1(&s3)) };
|
||||
(w2, w3)
|
||||
}
|
||||
}
|
||||
|
||||
fn foo6() {
|
||||
|
||||
// Whatever (note that it doesn't automatically do Copy):
|
||||
struct State {
|
||||
v: u32,
|
||||
}
|
||||
|
||||
// Purposely put state somewhere it goes out of scope:
|
||||
let s = {
|
||||
let s_orig = State {
|
||||
v: 105,
|
||||
};
|
||||
Rc::new(s_orig)
|
||||
};
|
||||
/*
|
||||
let fn1 = |f: &dyn Fn(&dyn Fn() -> W) -> (&dyn Fn() -> W)| -> (&dyn Fn() -> W) {
|
||||
&(|| -> W {
|
||||
let s2 = Rc::clone(&s);
|
||||
W { b: Box::new(move || f(f)) }
|
||||
})
|
||||
};
|
||||
|
||||
let f2 = fn1(fn1);
|
||||
*/
|
||||
}
|
||||
|
||||
fn foo7(t: impl Clone) -> impl Clone {
|
||||
t.clone()
|
||||
}
|
||||
|
||||
fn foo7b<T: Clone>(t: T) -> T {
|
||||
t.clone()
|
||||
}
|
||||
|
||||
fn foo7c<T>(t: T) -> T where T: Clone {
|
||||
t.clone()
|
||||
}
|
||||
|
||||
// A simple implementation of the Y Combinator
|
||||
// λf.(λx.xx)(λx.f(xx))
|
||||
// <=> λf.(λx.f(xx))(λx.f(xx))
|
||||
|
||||
// CREDITS: A better version of the previous code that was posted here, with detailed explanation.
|
||||
// See <y> and also <y_apply>.
|
||||
|
||||
// A function type that takes its own type as an input is an infinite recursive type.
|
||||
// We introduce a trait that will allow us to have an input with the same type as self, and break the recursion.
|
||||
// The input is going to be a trait object that implements the desired function in the interface.
|
||||
// NOTE: We will be coercing a reference to a closure into this trait object.
|
||||
|
||||
trait Apply<T, R> {
|
||||
fn apply(&self, f: &dyn Apply<T, R>, t: T) -> R;
|
||||
}
|
||||
|
||||
// In Rust, closures fall into three kinds: FnOnce, FnMut and Fn.
|
||||
// FnOnce assumed to be able to be called just once if it is not Clone. It is impossible to
|
||||
// write recursive FnOnce that is not Clone.
|
||||
// All FnMut are also FnOnce, although you can call them multiple times, they are not allow to
|
||||
// have a reference to themselves. So it is also not possible to write recursive FnMut closures
|
||||
// that is not Clone.
|
||||
// All Fn are also FnMut, and all closures of Fn are also Clone. However, programmers can create
|
||||
// Fn objects that are not Clone
|
||||
|
||||
// This will work for all Fn objects, not just closures
|
||||
// And it is a little bit more efficient for Fn closures as it do not clone itself.
|
||||
impl<T, R, F> Apply<T, R> for F where F:
|
||||
Fn(&dyn Apply<T, R>, T) -> R
|
||||
{
|
||||
fn apply(&self, f: &dyn Apply<T, R>, t: T) -> R {
|
||||
self(f, t)
|
||||
|
||||
// NOTE: Each letter is an individual symbol.
|
||||
// (λx.(λy.xxy))(λx.(λy.f(λz.xxz)y))t
|
||||
// => (λx.xx)(λx.f(xx))t
|
||||
// => (Yf)t
|
||||
}
|
||||
}
|
||||
|
||||
// This works for all closures that is Clone, and those are Fn.
|
||||
// impl<T, R, F> Apply<T, R> for F where F: FnOnce( &Apply<T, R>, T ) -> R + Clone {
|
||||
// fn apply( &self, f: &Apply<T, R>, t: T ) -> R {
|
||||
// (self.clone())( f, t )
|
||||
|
||||
// // If we were to pass in self as f, we get -
|
||||
// // NOTE: Each letter is an individual symbol.
|
||||
// // λf.λt.sft
|
||||
// // => λs.λt.sst [s/f]
|
||||
// // => λs.ss
|
||||
// }
|
||||
// }
|
||||
|
||||
// Before 1.26 we have some limitations and so we need some workarounds. But now impl Trait is stable and we can
|
||||
// write the following:
|
||||
|
||||
fn y<T,R>(f:impl Fn(&dyn Fn(T) -> R, T) -> R) -> impl Fn(T) -> R {
|
||||
move |t| (
|
||||
|x: &dyn Apply<T,R>, y| x.apply(x, y)
|
||||
) (
|
||||
&|x: &dyn Apply<T,R>, y| f(
|
||||
&|z| x.apply(x,z),
|
||||
y
|
||||
),
|
||||
t
|
||||
)
|
||||
}
|
||||
|
||||
// fn y<T,R>(f:impl FnOnce(&Fn(T) -> R, T) -> R + Clone) -> impl FnOnce(T) -> R {
|
||||
// |t| (|x: &Apply<T,R>,y| x.apply(x,y))
|
||||
// (&move |x:&Apply<T,R>,y| f(&|z| x.apply(x,z), y), t)
|
||||
|
||||
// // NOTE: Each letter is an individual symbol.
|
||||
// // (λx.(λy.xxy))(λx.(λy.f(λz.xxz)y))t
|
||||
// // => (λx.xx)(λx.f(xx))t
|
||||
// // => (Yf)t
|
||||
// }
|
||||
|
||||
// Previous version removed as they are just hacks when impl Trait is not available.
|
||||
|
||||
fn fac(n: usize) -> usize {
|
||||
let almost_fac = |f: &dyn Fn(usize) -> usize, x|
|
||||
if x == 0 {
|
||||
1
|
||||
} else {
|
||||
x * f(x - 1)
|
||||
}
|
||||
;
|
||||
let fac = y( almost_fac );
|
||||
fac(n)
|
||||
}
|
||||
|
||||
fn fib( n: usize ) -> usize {
|
||||
let almost_fib = |f: &dyn Fn(usize) -> usize, x|
|
||||
if x < 2 {
|
||||
1
|
||||
} else {
|
||||
f(x - 2) + f(x - 1)
|
||||
};
|
||||
let fib = y(almost_fib);
|
||||
fib(n)
|
||||
}
|
||||
|
||||
fn optimal_fib( n: usize ) -> usize {
|
||||
let almost_fib = |f: &dyn Fn((usize,usize,usize)) -> usize, (i0,i1,x)|
|
||||
match x {
|
||||
0 => i0,
|
||||
1 => i1,
|
||||
x => f((i1,i0+i1, x-1))
|
||||
}
|
||||
;
|
||||
let fib = |x| y(almost_fib)((1,1,x));
|
||||
fib(n)
|
||||
}
|
||||
|
||||
fn test_y() {
|
||||
println!("{}", fac(10));
|
||||
println!("{}", fib(10));
|
||||
println!("{}", optimal_fib(10));
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user