568 lines
20 KiB
Rust
568 lines
20 KiB
Rust
use std::rc::Rc;
|
|
use nalgebra::*;
|
|
//pub mod examples;
|
|
|
|
use crate::openmesh::{OpenMesh, Mat4, vertex, transform};
|
|
use crate::rule::{Rule, RuleFn, RuleEval, Child};
|
|
use crate::prim;
|
|
use crate::util;
|
|
|
|
fn cube_thing() -> Rule {
|
|
|
|
// Quarter-turn in radians:
|
|
let qtr = std::f32::consts::FRAC_PI_2;
|
|
|
|
let y = &Vector3::y_axis();
|
|
let z = &Vector3::z_axis();
|
|
|
|
// Each element of this turns to a branch for the recursion:
|
|
let turns: Vec<Mat4> = vec![
|
|
geometry::Transform3::identity().to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
|
];
|
|
|
|
let gen_xform = |rot: &Mat4| -> Mat4 {
|
|
(rot *
|
|
Matrix4::new_scaling(0.5) *
|
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous())
|
|
};
|
|
|
|
let rec = move |self_: Rc<Rule>| -> RuleEval {
|
|
|
|
let xforms = turns.iter().map(gen_xform);
|
|
RuleEval {
|
|
geom: prim::cube(),
|
|
final_geom: prim::empty_mesh(),
|
|
children: xforms.map(move |xf| Child {
|
|
rule: self_.clone(),
|
|
xf: xf,
|
|
vmap: vec![],
|
|
}).collect(),
|
|
}
|
|
};
|
|
// I can't really do *mutual* recursion with the above, can I? I'd
|
|
// need actual functions for that.
|
|
|
|
// "Constants" outside the closure only work the way I think they
|
|
// should work if:
|
|
// - they're actually static
|
|
// - they implement Copy
|
|
// - the closure can move them
|
|
|
|
Rule { eval: Box::new(rec) }
|
|
}
|
|
|
|
/*
|
|
#[derive(Copy, Clone)]
|
|
struct CurveHorn {
|
|
seed: [Vertex; 4],
|
|
id_xform: Mat4,
|
|
flip180: Mat4,
|
|
incr: Mat4,
|
|
}
|
|
|
|
impl CurveHorn {
|
|
|
|
fn test_thing(&self) {
|
|
let f: Box<dyn Fn() -> RuleEval> = Box::new(move || self.do_nothing());
|
|
println!("{:p}", f);
|
|
}
|
|
|
|
fn do_nothing(&self) -> RuleEval {
|
|
RuleEval {
|
|
geom: prim::empty_mesh(),
|
|
final_geom: prim::empty_mesh(),
|
|
children: vec![
|
|
Child {
|
|
rule: Rule { eval: Box::new(move || self.do_nothing()) },
|
|
xf: self.id_xform,
|
|
vmap: vec![0,1,2,3],
|
|
},
|
|
],
|
|
}
|
|
}
|
|
|
|
fn init() -> Rule {
|
|
let y = &Vector3::y_axis();
|
|
let c = CurveHorn {
|
|
seed: [
|
|
vertex(-0.5, -0.5, 0.0),
|
|
vertex(-0.5, 0.5, 0.0),
|
|
vertex( 0.5, 0.5, 0.0),
|
|
vertex( 0.5, -0.5, 0.0),
|
|
],
|
|
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
|
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
|
|
&nalgebra::Vector3::y_axis(),
|
|
std::f32::consts::PI).to_homogeneous(),
|
|
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
|
Matrix4::new_scaling(0.95) *
|
|
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
|
|
};
|
|
Rule { eval: Box::new(move || c.do_nothing()) }
|
|
}
|
|
}
|
|
fn start(&self) -> RuleEval {
|
|
RuleEval {
|
|
geom: OpenMesh {
|
|
verts: self.seed.to_vec(),
|
|
faces: vec![],
|
|
},
|
|
final_geom: prim::empty_mesh(),
|
|
children: vec![
|
|
Child {
|
|
rule: Rule { eval: Box::new(move || self.recur()) },
|
|
xf: self.id_xform,
|
|
vmap: vec![0,1,2,3],
|
|
},
|
|
Child {
|
|
rule: Rule { eval: Box::new(move || self.recur()) },
|
|
xf: self.flip180,
|
|
vmap: vec![3,2,1,0],
|
|
},
|
|
],
|
|
}
|
|
}
|
|
|
|
fn recur(&self) -> RuleEval {
|
|
|
|
let verts = self.seed.clone();
|
|
let next_verts: Vec<Vertex> = transform(&verts, &self.incr);
|
|
|
|
let geom = OpenMesh {
|
|
verts: next_verts.clone(),
|
|
faces: vec![
|
|
// The below is just connecting two groups of 4 vertices
|
|
// each, straight across and then to the next.
|
|
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
|
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
|
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
|
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
|
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
|
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
|
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
|
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
|
// TODO: I should really generate these, not hard-code them.
|
|
],
|
|
};
|
|
|
|
// TODO: This could be made slightly nicer by taking it to a peak
|
|
// instead of just flattening it in XY, but this is a pretty minor
|
|
// change.
|
|
let final_geom = OpenMesh {
|
|
verts: vec![],
|
|
faces: vec![
|
|
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
|
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
|
],
|
|
};
|
|
|
|
RuleEval{
|
|
geom: geom,
|
|
final_geom: final_geom,
|
|
children: vec![
|
|
Child {
|
|
rule: Rule { eval: Box::new(move || self.recur()) },
|
|
xf: self.incr,
|
|
vmap: vec![0,1,2,3],
|
|
},
|
|
],
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CubeThing {
|
|
}
|
|
|
|
impl CubeThing {
|
|
|
|
fn init() -> Rule {
|
|
let c = CubeThing {};
|
|
Rule { eval: Box::new(|| c.rec()) }
|
|
}
|
|
|
|
fn rec(&self) -> RuleEval {
|
|
|
|
let mesh = prim::cube();
|
|
|
|
// Quarter-turn in radians:
|
|
let qtr = std::f32::consts::FRAC_PI_2;
|
|
|
|
let y = &Vector3::y_axis();
|
|
let z = &Vector3::z_axis();
|
|
|
|
// Each element of this turns to a branch for the recursion:
|
|
let turns: Vec<Mat4> = vec![
|
|
geometry::Transform3::identity().to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
|
];
|
|
|
|
let gen_rulestep = |rot: &Mat4| -> Child {
|
|
let m: Mat4 = rot *
|
|
Matrix4::new_scaling(0.5) *
|
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.rec()) },
|
|
xf: m,
|
|
vmap: vec![],
|
|
}
|
|
};
|
|
|
|
RuleEval {
|
|
geom: mesh,
|
|
final_geom: prim::empty_mesh(),
|
|
children: turns.iter().map(gen_rulestep).collect(),
|
|
}
|
|
}
|
|
}
|
|
|
|
struct RamHorn {
|
|
}
|
|
|
|
impl RamHorn {
|
|
|
|
fn init() -> Rule {
|
|
let r = RamHorn{};
|
|
Rule { eval: Box::new(|| r.start()) }
|
|
}
|
|
|
|
// Conversion from Python & automata_scratch
|
|
fn start(&self) -> RuleEval {
|
|
let opening_xform = |i| {
|
|
let r = std::f32::consts::FRAC_PI_2 * i;
|
|
((geometry::Rotation3::from_axis_angle(
|
|
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
|
|
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
|
Matrix4::new_scaling(0.5) *
|
|
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
|
};
|
|
RuleEval {
|
|
geom: OpenMesh {
|
|
verts: vec![
|
|
// 'Top' vertices:
|
|
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
|
|
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
|
|
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
|
|
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
|
|
// Top edge midpoints:
|
|
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
|
|
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
|
|
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
|
|
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
|
|
// Top middle:
|
|
vertex( 0.0, 0.0, 1.0), // 8
|
|
// 'Bottom' vertices:
|
|
vertex(-0.5, -0.5, 0.0), // 9
|
|
vertex(-0.5, 0.5, 0.0), // 10
|
|
vertex( 0.5, 0.5, 0.0), // 11
|
|
vertex( 0.5, -0.5, 0.0), // 12
|
|
],
|
|
faces: vec![
|
|
// bottom face:
|
|
Tag::Body(9), Tag::Body(10), Tag::Body(11),
|
|
Tag::Body(9), Tag::Body(11), Tag::Body(12),
|
|
// two faces straddling edge from vertex 0:
|
|
Tag::Body(9), Tag::Body(0), Tag::Body(4),
|
|
Tag::Body(9), Tag::Body(7), Tag::Body(0),
|
|
// two faces straddling edge from vertex 1:
|
|
Tag::Body(10), Tag::Body(1), Tag::Body(5),
|
|
Tag::Body(10), Tag::Body(4), Tag::Body(1),
|
|
// two faces straddling edge from vertex 2:
|
|
Tag::Body(11), Tag::Body(2), Tag::Body(6),
|
|
Tag::Body(11), Tag::Body(5), Tag::Body(2),
|
|
// two faces straddling edge from vertex 3:
|
|
Tag::Body(12), Tag::Body(3), Tag::Body(7),
|
|
Tag::Body(12), Tag::Body(6), Tag::Body(3),
|
|
// four faces from edge (0,1), (1,2), (2,3), (3,0):
|
|
Tag::Body(9), Tag::Body(4), Tag::Body(10),
|
|
Tag::Body(10), Tag::Body(5), Tag::Body(11),
|
|
Tag::Body(11), Tag::Body(6), Tag::Body(12),
|
|
Tag::Body(12), Tag::Body(7), Tag::Body(9),
|
|
],
|
|
},
|
|
final_geom: prim::empty_mesh(),
|
|
children: vec![
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
|
xf: opening_xform(0.0),
|
|
vmap: vec![5,2,6,8],
|
|
},
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
|
xf: opening_xform(1.0),
|
|
vmap: vec![4,1,5,8],
|
|
},
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
|
xf: opening_xform(2.0),
|
|
vmap: vec![7,0,4,8],
|
|
},
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
|
xf: opening_xform(3.0),
|
|
vmap: vec![6,3,7,8],
|
|
},
|
|
// TODO: These vertex mappings appear to be right.
|
|
// Explain *why* they are right.
|
|
],
|
|
}
|
|
}
|
|
|
|
fn ram_horn(&self) -> RuleEval {
|
|
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
|
|
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
|
|
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
|
|
Matrix4::new_scaling(0.9);
|
|
let seed = vec![
|
|
vertex(-0.5, -0.5, 1.0),
|
|
vertex(-0.5, 0.5, 1.0),
|
|
vertex( 0.5, 0.5, 1.0),
|
|
vertex( 0.5, -0.5, 1.0),
|
|
];
|
|
let next = transform(&seed, &incr);
|
|
let geom = OpenMesh {
|
|
verts: next,
|
|
faces: vec![
|
|
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
|
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
|
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
|
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
|
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
|
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
|
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
|
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
|
],
|
|
};
|
|
let final_geom = OpenMesh {
|
|
verts: vec![],
|
|
faces: vec![
|
|
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
|
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
|
],
|
|
};
|
|
RuleEval {
|
|
geom: geom,
|
|
final_geom: final_geom,
|
|
children: vec![
|
|
Child {
|
|
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
|
xf: incr,
|
|
vmap: vec![0,1,2,3],
|
|
},
|
|
],
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
// Meant to be a copy of twist_from_gen from Python & automata_scratch
|
|
fn twist(f: f32, subdiv: usize) -> Rule {
|
|
// TODO: Clean this code up. It was a very naive conversion from
|
|
// the non-closure version.
|
|
let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous();
|
|
let seed = {
|
|
let s = vec![vertex(-0.5, 0.0, -0.5),
|
|
vertex( 0.5, 0.0, -0.5),
|
|
vertex( 0.5, 0.0, 0.5),
|
|
vertex(-0.5, 0.0, 0.5)];
|
|
util::subdivide_cycle(&transform(&s, &xf), subdiv)
|
|
};
|
|
let n = seed.len();
|
|
let dx0: f32 = 1.5;
|
|
let dy: f32 = 0.1/f;
|
|
let ang: f32 = 0.05/f;
|
|
let count: usize = 4;
|
|
|
|
// Quarter-turn in radians:
|
|
let qtr = std::f32::consts::FRAC_PI_2;
|
|
let y = Vector3::y_axis();
|
|
|
|
let incr_inner = geometry::Translation3::new(-dx0, 0.0, 0.0).to_homogeneous() *
|
|
geometry::Rotation3::from_axis_angle(&y, ang).to_homogeneous() *
|
|
geometry::Translation3::new(dx0, dy, 0.0).to_homogeneous();
|
|
let incr_outer = geometry::Translation3::new(-dx0*2.0, 0.0, 0.0).to_homogeneous() *
|
|
geometry::Rotation3::from_axis_angle(&y, ang/2.0).to_homogeneous() *
|
|
geometry::Translation3::new(dx0*2.0, dy, 0.0).to_homogeneous();
|
|
// TODO: Cleanliness fix - transforms?
|
|
|
|
let seed2 = seed.clone();
|
|
// TODO: Why do I need the above?
|
|
let recur = move |incr: Mat4| -> RuleFn {
|
|
|
|
let seed_next = transform(&seed2, &incr);
|
|
|
|
// TODO: Cleanliness fix - utility function to make a zigzag mesh?
|
|
let geom = OpenMesh {
|
|
verts: seed_next.clone(),
|
|
faces: util::parallel_zigzag_faces(n),
|
|
};
|
|
// TODO: Cleanliness fix - why not just make these return meshes?
|
|
let (vc, faces) = util::connect_convex(&seed_next, true);
|
|
let final_geom = OpenMesh {
|
|
verts: vec![vc],
|
|
faces: faces,
|
|
};
|
|
|
|
let c = move |self_: Rc<Rule>| -> RuleEval {
|
|
// TODO: Why clone geometry here if I just have to clone it
|
|
// later on? Seems like Rc may be much easier (if I can't
|
|
// borrow directly - which is probably the case).
|
|
RuleEval {
|
|
geom: geom.clone(),
|
|
final_geom: final_geom.clone(),
|
|
children: vec![
|
|
Child {
|
|
rule: self_.clone(),
|
|
xf: incr,
|
|
vmap: (0..n).collect(),
|
|
},
|
|
],
|
|
}
|
|
};
|
|
Box::new(c)
|
|
};
|
|
// TODO: Can a macro do anything to clean up some of the
|
|
// repetition with HOFs & closures?
|
|
|
|
// TODO: so there's incr_inner & incr_outer that I wanted to
|
|
// parametrize over. why is it so ugly to do so?
|
|
|
|
let start = move |_| -> RuleEval {
|
|
|
|
let xform = |dx, i, ang0, div| -> Mat4 {
|
|
(geometry::Rotation3::from_axis_angle(&y, ang0 + (qtr / div * (i as f32))).to_homogeneous() *
|
|
geometry::Translation3::new(dx, 0.0, 0.0).to_homogeneous())
|
|
};
|
|
// TODO: Cleanliness fix - transforms?
|
|
|
|
let make_child = |incr, xform| -> (OpenMesh, Child) {
|
|
|
|
let c = Child {
|
|
rule: Rc::new(Rule { eval: (recur.clone())(incr) }),
|
|
// TODO: Cleanliness fix - can macros clean up above?
|
|
xf: xform,
|
|
vmap: (0..(n+1)).collect(),
|
|
// N.B. n+1, not n. the +1 is for the centroid below.
|
|
};
|
|
let mut vs = transform(&seed, &xform);
|
|
// and in the process, generate faces for these seeds:
|
|
let (centroid, f) = util::connect_convex(&vs, false);
|
|
vs.push(centroid);
|
|
(OpenMesh { verts: vs, faces: f }, c)
|
|
};
|
|
|
|
// Generate 'count' children, shifted/rotated differently:
|
|
let children_inner = (0..count).map(|i| make_child(incr_inner, xform(dx0, i, 0.0, 1.0)));
|
|
let children_outer = (0..count).map(|i| make_child(incr_outer, xform(dx0*2.0, i, qtr/2.0, 2.0)));
|
|
|
|
RuleEval::from_pairs(
|
|
children_inner.chain(children_outer), prim::empty_mesh())
|
|
};
|
|
|
|
Rule { eval: Box::new(start) }
|
|
}
|
|
|
|
pub fn main() {
|
|
|
|
/*
|
|
{
|
|
let vs = vec![
|
|
vertex(-0.5, 0.0, -0.5),
|
|
vertex( 0.5, 0.0, -0.5),
|
|
vertex( 0.5, 0.0, 0.5),
|
|
vertex(-0.5, 0.0, 0.5),
|
|
];
|
|
let vs2 = util::subdivide_cycle(&vs, 2);
|
|
println!("vs={:?}", vs);
|
|
println!("vs2={:?}", vs2);
|
|
}
|
|
|
|
fn run_test(r: Rule, iters: u32, name: &str) {
|
|
println!("Running {}...", name);
|
|
let (mesh, nodes) = r.to_mesh(iters);
|
|
println!("Evaluated {} rules", nodes);
|
|
let fname = format!("{}.stl", name);
|
|
println!("Writing {}...", fname);
|
|
mesh.write_stl_file(&fname).unwrap();
|
|
}
|
|
|
|
fn run_test_iter(r: Rule, iters: usize, name: &str) {
|
|
println!("Running {}...", name);
|
|
let (mesh, nodes) = r.to_mesh_iter(iters);
|
|
println!("Evaluated {} rules", nodes);
|
|
let fname = format!("{}.stl", name);
|
|
println!("Writing {}...", fname);
|
|
mesh.write_stl_file(&fname).unwrap();
|
|
}
|
|
*/
|
|
|
|
fn run_test_iter(r: &Rc<Rule>, iters: usize, name: &str) {
|
|
println!("Running {}...", name);
|
|
let (mesh, nodes) = Rule::to_mesh_iter(r.clone(), iters);
|
|
println!("Evaluated {} rules", nodes);
|
|
let fname = format!("{}.stl", name);
|
|
println!("Writing {}...", fname);
|
|
mesh.write_stl_file(&fname).unwrap();
|
|
}
|
|
|
|
/*
|
|
run_test(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing");
|
|
// this can't work on its own because the resultant OpenMesh still
|
|
// has parent references:
|
|
//run_test(Rule { eval: recur }, 100, "curve_horn_thing");
|
|
run_test(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2");
|
|
run_test(RamHorn::init(), Rule { eval: RamHorn::start }, 200, "ram_horn");
|
|
run_test(Twist::init(), Rule { eval: Twist::start }, 200, "twist");
|
|
*/
|
|
|
|
//run_test_iter(CubeThing::init(), 3, "cube_thing2");
|
|
//run_test_iter(CurveHorn::init(), 100, "curve_horn2_iter");
|
|
//run_test_iter(RamHorn::init(), 100, "ram_horn2");
|
|
// TODO: If I increase the above from 100 to ~150, Blender reports
|
|
// that the very tips are non-manifold. I am wondering if this is
|
|
// some sort of numerical precision issue.
|
|
|
|
//run_test_iter(Twist::init(1.0, 2), 100, "twist");
|
|
// This is a stress test:
|
|
// let f = 20;
|
|
// run_test_iter(Twist::init(f as f32, 32), 100*f, "twist2");
|
|
|
|
run_test_iter(&Rc::new(cube_thing()), 3, "cube_thing3");
|
|
run_test_iter(&Rc::new(twist(1.0, 2)), 200, "twist");
|
|
|
|
if false
|
|
{
|
|
let a = vec![1,2,3];
|
|
|
|
let c = move || {
|
|
println!("c: a={:?}", a);
|
|
};
|
|
|
|
let r: Rc<dyn Fn()> = Rc::new(c);
|
|
// But this will fail at the function calls below:
|
|
//let r: Rc<dyn FnOnce()> = Rc::new(c);
|
|
let r2 = r.clone();
|
|
|
|
println!("strong_count={}", Rc::strong_count(&r2));
|
|
println!("weak_count={}", Rc::weak_count(&r2));
|
|
|
|
r2();
|
|
r();
|
|
|
|
let a2 = vec![1,2,3];
|
|
let c2 = move || {
|
|
println!("c2: a2={:?}", a2);
|
|
};
|
|
let b: Box<dyn FnOnce()> = Box::new(c2);
|
|
b();
|
|
}
|
|
}
|