495 lines
17 KiB
Rust
495 lines
17 KiB
Rust
use nalgebra::*;
|
|
use std::fs::OpenOptions;
|
|
use std::io;
|
|
|
|
/// A type for custom mesh vertices. Initialize with [vertex][self::vertex].
|
|
pub type Vertex = Vector4<f32>;
|
|
pub type Mat4 = Matrix4<f32>;
|
|
|
|
/// Initializes a vertex:
|
|
pub fn vertex(x: f32, y: f32, z: f32) -> Vertex {
|
|
Vertex::new(x, y, z, 1.0)
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
enum Tag {
|
|
Body(usize),
|
|
Exit(usize, usize), // (group, vertex)
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct OpenMesh {
|
|
// Vertices (in homogeneous coordinates).
|
|
verts: Vec<Vertex>,
|
|
// Triangles, taken as every 3 values, treated each as indices
|
|
// into 'verts':
|
|
faces: Vec<Tag>,
|
|
exit_groups: Vec<usize>,
|
|
}
|
|
|
|
impl OpenMesh {
|
|
|
|
fn transform(&self, xfm: Mat4) -> OpenMesh {
|
|
OpenMesh {
|
|
verts: self.verts.iter().map(|v| xfm * v).collect(),
|
|
// TODO: Is the above faster if I pack vectors into a
|
|
// bigger matrix, and transform that?
|
|
faces: self.faces.clone(), // TODO: Use Rc?
|
|
exit_groups: self.exit_groups.clone(),
|
|
}
|
|
}
|
|
|
|
fn write_stl_file(&self, fname: &str) -> io::Result<()> {
|
|
let mut file = OpenOptions::new().write(true).create(true).truncate(true).open(fname)?;
|
|
self.write_stl(&mut file)
|
|
}
|
|
|
|
fn write_stl<W: std::io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
|
|
|
// Every group of 3 indices in self.faces is one triangle, so
|
|
// pre-allocate in the format stl_io wants:
|
|
let num_faces = self.faces.len() / 3;
|
|
let mut triangles = vec![stl_io::Triangle {
|
|
normal: [0.0; 3],
|
|
vertices: [[0.0; 3]; 3],
|
|
}; num_faces];
|
|
|
|
let get_vert = |j| {
|
|
match self.faces[j] {
|
|
Tag::Body(n) => self.verts[n].xyz(),
|
|
Tag::Exit(_, _) => panic!("Cannot write_stl() if mesh has exit groups!"),
|
|
}
|
|
};
|
|
// TODO: Handle this behavior
|
|
|
|
// Turn every face into an stl_io::Triangle:
|
|
for i in 0..num_faces {
|
|
let v0 = get_vert(3*i + 0);
|
|
let v1 = get_vert(3*i + 1);
|
|
let v2 = get_vert(3*i + 2);
|
|
|
|
let normal = (v1-v0).cross(&(v2-v0));
|
|
|
|
triangles[i].normal.copy_from_slice(&normal.as_slice());
|
|
triangles[i].vertices[0].copy_from_slice(v0.as_slice());
|
|
triangles[i].vertices[1].copy_from_slice(v1.as_slice());
|
|
triangles[i].vertices[2].copy_from_slice(v2.as_slice());
|
|
// TODO: Is there a cleaner way to do the above?
|
|
}
|
|
|
|
// I could also solve this with something like
|
|
// https://doc.rust-lang.org/std/primitive.slice.html#method.chunks_exact
|
|
// however I don't know what performance difference may be.
|
|
|
|
stl_io::write_stl(writer, triangles.iter())
|
|
}
|
|
|
|
fn connect(&self, others: &Vec<OpenMesh>) -> OpenMesh {
|
|
|
|
println!("DEBUG: connect(), self has {} exit groups, others have {:?}",
|
|
self.exit_groups.len(), others.iter().map(|o| o.exit_groups.len()).collect::<Vec<usize>>());
|
|
println!("DEBUG: connect(), self: verts.len()={} faces.len()={} max face={}", self.verts.len(), self.faces.len(), self.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap());
|
|
|
|
// Copy body vertices & faces:
|
|
let mut verts: Vec<Vertex> = self.verts.clone();
|
|
let mut faces = self.faces.clone();
|
|
|
|
let mut exit_groups: Vec<usize> = vec![];
|
|
|
|
let mut body_offset = self.verts.len();
|
|
let mut exit_offset = 0;
|
|
let mut offsets: Vec<usize> = vec![0; others.len()];
|
|
for (i,other) in others.iter().enumerate() {
|
|
|
|
let max_ = other.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap_or(&0);
|
|
println!("DEBUG: connect(), other[{}]: verts.len()={} faces.len()={} max face={}", i, other.verts.len(), other.faces.len(), max_);
|
|
println!("DEBUG: start body_offset={}", body_offset);
|
|
|
|
// Append body vertices & exit vertices directly:
|
|
verts.append(&mut other.verts.clone());
|
|
|
|
// Append faces, shifting each kind by respective offset:
|
|
faces.extend(other.faces.iter().map(|t| {
|
|
match t {
|
|
Tag::Body(n) => Tag::Body(n + body_offset),
|
|
Tag::Exit(g, n) => Tag::Exit(g + exit_groups.len(), n + exit_offset),
|
|
}
|
|
}));
|
|
if i < self.exit_groups.len() {
|
|
exit_offset += self.exit_groups[i];
|
|
}
|
|
exit_groups.append(&mut other.exit_groups.clone());
|
|
|
|
// Increase offsets by the number of elements we appended:
|
|
body_offset += other.verts.len();
|
|
offsets[i] = body_offset;
|
|
|
|
println!("DEBUG: end body_offset={}", body_offset);
|
|
}
|
|
|
|
// All of the Exit face indices from 'self' need to be
|
|
// modified to refer to Body vertices of something in
|
|
// 'others':
|
|
for i in 0..faces.len() {
|
|
match faces[i] {
|
|
Tag::Exit(g, n) => {
|
|
faces[i] = Tag::Body(n + offsets[g]);
|
|
},
|
|
_ => { },
|
|
};
|
|
}
|
|
|
|
let m = OpenMesh {
|
|
verts: verts,
|
|
faces: faces,
|
|
exit_groups: exit_groups,
|
|
};
|
|
|
|
// TODO: Why is this still ending up with Exit faces despite my loop above?
|
|
println!("Returning mesh with verts.len()={} faces.len()={} max face={}", m.verts.len(), m.faces.len(), m.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap());
|
|
println!("Returning: {:?}", m);
|
|
return m;
|
|
}
|
|
}
|
|
|
|
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
|
enum Rule {
|
|
// Produce geometry, and possibly recurse further:
|
|
Recurse(fn () -> RuleStep),
|
|
// Stop recursing here:
|
|
EmptyRule,
|
|
}
|
|
// TODO: Rename rules?
|
|
// TODO: It may be possible to have just a 'static' rule that requires
|
|
// no function call.
|
|
|
|
struct RuleStep {
|
|
// The geometry generated by this rule on its own (not by any of
|
|
// the child rules).
|
|
geom: OpenMesh,
|
|
|
|
// The "final" geometry, used only if recursion must be stopped.
|
|
// This should be in the same coordinate space as 'geom', and
|
|
// properly close any exit groups that it may have (and have no
|
|
// exit groups of its own).
|
|
final_geom: OpenMesh,
|
|
|
|
// Child rules, paired with the transform that will be applied to
|
|
// all of their geometry
|
|
children: Vec<(Rule, Mat4)>,
|
|
}
|
|
|
|
impl Rule {
|
|
|
|
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
|
|
// could end up having a lot of identical geometry that need not be
|
|
// duplicated until it is transformed into the global space.
|
|
//
|
|
// This might produce bigger gains if I rewrite rule_to_mesh so that
|
|
// rather than repeatedly transforming meshes, it stacks
|
|
// transformations and then applies them all at once.
|
|
|
|
fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
|
|
|
let mut nodes: u32 = 1;
|
|
|
|
if iters_left <= 0 {
|
|
match self {
|
|
Rule::Recurse(f) => {
|
|
let rs: RuleStep = f();
|
|
return (rs.final_geom, 1);
|
|
}
|
|
Rule::EmptyRule => {
|
|
return (empty_mesh(), nodes);
|
|
}
|
|
}
|
|
}
|
|
|
|
match self {
|
|
Rule::Recurse(f) => {
|
|
let rs: RuleStep = f();
|
|
|
|
// Get sub-geometry (from child rules) and transform it:
|
|
let subgeom: Vec<(OpenMesh, Mat4, u32)> = rs.children.iter().map(|(subrule, subxform)| {
|
|
let (m,n) = subrule.to_mesh(iters_left - 1);
|
|
(m, *subxform, n)
|
|
}).collect();
|
|
|
|
// Tally up node count:
|
|
subgeom.iter().for_each(|(_,_,n)| nodes += n);
|
|
|
|
let g: Vec<OpenMesh> = subgeom.iter().map(|(m,x,_)| m.transform(*x)).collect();
|
|
|
|
// Connect geometry from this rule (not child rules):
|
|
return (rs.geom.connect(&g), nodes);
|
|
}
|
|
Rule::EmptyRule => {
|
|
return (empty_mesh(), nodes);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// is there a better way to do this?
|
|
fn empty_mesh() -> OpenMesh {
|
|
OpenMesh {
|
|
verts: vec![],
|
|
faces: vec![],
|
|
exit_groups: vec![],
|
|
}
|
|
}
|
|
|
|
fn cube() -> OpenMesh {
|
|
OpenMesh {
|
|
verts: vec![
|
|
vertex(0.0, 0.0, 0.0),
|
|
vertex(1.0, 0.0, 0.0),
|
|
vertex(0.0, 1.0, 0.0),
|
|
vertex(1.0, 1.0, 0.0),
|
|
vertex(0.0, 0.0, 1.0),
|
|
vertex(1.0, 0.0, 1.0),
|
|
vertex(0.0, 1.0, 1.0),
|
|
vertex(1.0, 1.0, 1.0),
|
|
],
|
|
faces: vec![
|
|
Tag::Body(0), Tag::Body(3), Tag::Body(1),
|
|
Tag::Body(0), Tag::Body(2), Tag::Body(3),
|
|
Tag::Body(1), Tag::Body(7), Tag::Body(5),
|
|
Tag::Body(1), Tag::Body(3), Tag::Body(7),
|
|
Tag::Body(5), Tag::Body(6), Tag::Body(4),
|
|
Tag::Body(5), Tag::Body(7), Tag::Body(6),
|
|
Tag::Body(4), Tag::Body(2), Tag::Body(0),
|
|
Tag::Body(4), Tag::Body(6), Tag::Body(2),
|
|
Tag::Body(2), Tag::Body(7), Tag::Body(3),
|
|
Tag::Body(2), Tag::Body(6), Tag::Body(7),
|
|
Tag::Body(0), Tag::Body(1), Tag::Body(5),
|
|
Tag::Body(0), Tag::Body(5), Tag::Body(4),
|
|
],
|
|
exit_groups: vec![],
|
|
}.transform(geometry::Translation3::new(-0.5, -0.5, -0.5).to_homogeneous())
|
|
}
|
|
|
|
/*
|
|
fn curve_horn_start() -> RuleStep {
|
|
// Seed is a square in XY, sidelength 1, centered at (0,0,0):
|
|
let seed = {
|
|
let m = OpenMesh {
|
|
verts: vec![
|
|
vertex(0.0, 0.0, 0.0),
|
|
vertex(1.0, 0.0, 0.0),
|
|
vertex(1.0, 1.0, 0.0),
|
|
vertex(0.0, 1.0, 0.0),
|
|
],
|
|
faces: vec![
|
|
0, 1, 2,
|
|
0, 2, 3,
|
|
],
|
|
idxs_entrance: vec![0],
|
|
idxs_exit: vec![0],
|
|
idxs_body: (0, 0),
|
|
};
|
|
let xform = nalgebra::geometry::Translation3::new(-0.5, -0.5, 0.0).to_homogeneous();
|
|
m.transform(xform)
|
|
};
|
|
vec![
|
|
// Since neither of the other two rules *start* with geometry:
|
|
RuleStep { geom: seed.clone(),
|
|
rule: Box::new(Rule::EmptyRule),
|
|
xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
|
},
|
|
// Recurse in both directions:
|
|
RuleStep { geom: seed.clone(),
|
|
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
|
xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
|
},
|
|
RuleStep { geom: seed.clone(),
|
|
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
|
xform: nalgebra::geometry::Rotation3::from_axis_angle(
|
|
&nalgebra::Vector3::y_axis(),
|
|
std::f32::consts::FRAC_PI_2).to_homogeneous(),
|
|
},
|
|
]
|
|
}
|
|
|
|
//use std::convert::TryFrom;
|
|
*/
|
|
|
|
fn curve_horn_thing_rule() -> RuleStep {
|
|
|
|
let y = &Vector3::y_axis();
|
|
|
|
let m: Mat4 = geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
|
Matrix4::new_scaling(0.95) *
|
|
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous();
|
|
|
|
let mut verts = vec![
|
|
vertex(-0.5, -0.5, 0.0),
|
|
vertex(0.5, -0.5, 0.0),
|
|
vertex(-0.5, 0.5, 0.0),
|
|
vertex(0.5, 0.5, 0.0),
|
|
];
|
|
let mut v2: Vec<Vertex> = verts.iter().map(|v| m * v).collect();
|
|
let final_verts: Vec<Vertex> = v2.clone();
|
|
verts.append(&mut v2);
|
|
|
|
let geom = OpenMesh {
|
|
verts: verts,
|
|
faces: vec![
|
|
// Endcaps purposely left off for now.
|
|
// TODO: I should really generate these, not hard-code them.
|
|
Tag::Body(1), Tag::Exit(0, 7), Tag::Exit(0, 5),
|
|
Tag::Body(1), Tag::Body(3), Tag::Exit(0, 7),
|
|
Tag::Exit(0, 4), Tag::Body(2), Tag::Body(0),
|
|
Tag::Exit(0, 4), Tag::Exit(0, 6), Tag::Body(2),
|
|
Tag::Body(2), Tag::Exit(0, 7), Tag::Body(3),
|
|
Tag::Body(2), Tag::Exit(0, 6), Tag::Exit(0, 7),
|
|
Tag::Body(0), Tag::Body(1), Tag::Exit(0, 5),
|
|
Tag::Body(0), Tag::Exit(0, 5), Tag::Exit(0, 4),
|
|
],
|
|
exit_groups: vec![4],
|
|
};
|
|
|
|
let final_geom = OpenMesh {
|
|
verts: final_verts,
|
|
faces: vec![
|
|
Tag::Body(0), Tag::Body(3), Tag::Body(1),
|
|
Tag::Body(0), Tag::Body(2), Tag::Body(3),
|
|
],
|
|
exit_groups: vec![],
|
|
};
|
|
|
|
RuleStep{
|
|
geom: geom,
|
|
final_geom: final_geom,
|
|
children: vec![
|
|
(Rule::Recurse(curve_horn_thing_rule), m),
|
|
],
|
|
}
|
|
|
|
/*
|
|
// We need 3 indices per face, 2 faces per (boundary) vertex:
|
|
let num_verts = seed.no_vertices();
|
|
let mut idxs: Vec<u32> = vec![0; 2 * num_verts * 3];
|
|
for i in 0..num_verts {
|
|
let a1: u32 = i as _;
|
|
let a2: u32 = ((i + 1) % num_verts) as _;
|
|
let b1: u32 = (i + num_verts) as _;
|
|
let b2: u32 = (((i + 1) % num_verts) + num_verts) as _;
|
|
// Connect vertices into faces with a zig-zag pattern
|
|
// (mind the winding order). First face:
|
|
|
|
idxs[6*i + 0] = a1;
|
|
idxs[6*i + 1] = a2;
|
|
idxs[6*i + 2] = b1;
|
|
//println!("connect vert {}, face 1: ({}, {}, {}) = {}, {}, {}", i, a1, a2, b1, vert2str(a1), vert2str(a2), vert2str(b1));
|
|
// Second face:
|
|
idxs[6*i + 3] = b1;
|
|
idxs[6*i + 4] = a2;
|
|
idxs[6*i + 5] = b2;
|
|
//println!("connect vert {}, face 2: ({}, {}, {}) = {}, {}, {}", i, b1, a2, b2, vert2str(b1), vert2str(a2), vert2str(b2));
|
|
}
|
|
*/
|
|
}
|
|
|
|
fn cube_thing_rule() -> RuleStep {
|
|
|
|
let mesh = cube();
|
|
|
|
// Quarter-turn in radians:
|
|
let qtr = std::f32::consts::FRAC_PI_2;
|
|
|
|
let y = &Vector3::y_axis();
|
|
let z = &Vector3::z_axis();
|
|
|
|
// Each element of this turns to a branch for the recursion:
|
|
let turns: Vec<Mat4> = vec![
|
|
geometry::Transform3::identity().to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
|
];
|
|
|
|
let gen_rulestep = |rot: &Mat4| -> (Rule, Mat4) {
|
|
let m: Mat4 = rot *
|
|
Matrix4::new_scaling(0.5) *
|
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
|
(Rule::Recurse(cube_thing_rule), m)
|
|
};
|
|
|
|
RuleStep {
|
|
geom: mesh,
|
|
final_geom: empty_mesh(), // no exit groups
|
|
children: turns.iter().map(gen_rulestep).collect(),
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
|
|
// Below is so far my only example that uses entrance/exit groups:
|
|
/*
|
|
println!("DEBUG-------------------------------");
|
|
let m = OpenMesh {
|
|
verts: vec![
|
|
vertex(0.0, 0.0, 0.0),
|
|
vertex(1.0, 0.0, 0.0),
|
|
vertex(0.0, 1.0, 0.0),
|
|
vertex(1.0, 1.0, 0.0),
|
|
],
|
|
faces: vec![
|
|
Tag::Body(1), Tag::Exit(0,3), Tag::Exit(0,1),
|
|
Tag::Body(1), Tag::Body(3), Tag::Exit(0,3),
|
|
Tag::Exit(0,0), Tag::Body(2), Tag::Body(0),
|
|
Tag::Exit(0,0), Tag::Exit(0,2), Tag::Body(2),
|
|
Tag::Body(2), Tag::Exit(0,3), Tag::Body(3),
|
|
Tag::Body(2), Tag::Exit(0,2), Tag::Exit(0,3),
|
|
Tag::Body(0), Tag::Body(1), Tag::Exit(0,1),
|
|
Tag::Body(0), Tag::Exit(0,1), Tag::Exit(0,0),
|
|
],
|
|
exit_groups: vec![4],
|
|
};
|
|
|
|
let xform = geometry::Translation3::new(0.0, 0.0, 1.0).to_homogeneous();
|
|
let m2 = m.transform(xform);
|
|
let m3 = m.connect(&vec![m2.clone()]);
|
|
let m4 = m3.connect(&vec![m2.transform(xform)]);
|
|
println!("m4 = {:?}", m4);
|
|
|
|
m.write_stl_file("openmesh_cube.obj").unwrap();
|
|
m2.write_stl_file("openmesh_cube2.obj").unwrap();
|
|
m3.write_stl_file("openmesh_cube3.obj").unwrap();
|
|
|
|
{
|
|
let count = 10;
|
|
let mut mesh = m.clone();
|
|
let mut inc = m.clone();
|
|
for _ in 0..count {
|
|
inc = inc.transform(xform);
|
|
mesh = mesh.connect(&vec![inc.clone()]);
|
|
}
|
|
}
|
|
*/
|
|
|
|
{
|
|
let r = Rule::Recurse(cube_thing_rule);
|
|
let max_iters = 3;
|
|
println!("Running cube_thing_rule...");
|
|
let (cubemesh, nodes) = r.to_mesh(max_iters);
|
|
println!("Merged {} nodes", nodes);
|
|
println!("Writing STL...");
|
|
cubemesh.write_stl_file("cubemesh.stl").unwrap();
|
|
}
|
|
|
|
{
|
|
let r = Rule::Recurse(curve_horn_thing_rule);
|
|
let max_iters = 50;
|
|
println!("Running curve_horn_thing_rule...");
|
|
let (cubemesh, nodes) = r.to_mesh(max_iters);
|
|
//println!("cubemesh={:?}", cubemesh);
|
|
println!("Merged {} nodes", nodes);
|
|
println!("Writing STL...");
|
|
cubemesh.write_stl_file("curve_horn_thing.stl").unwrap();
|
|
}
|
|
}
|