prosha/src/main.rs

379 lines
13 KiB
Rust

//use std::io;
use tri_mesh::prelude::*;
enum Rule {
// Recurse further. Input is "seeds" that further geometry should
// *replace*. Generated geometry must have the same outer
// boundary as the seeds, and be in the same coordinate space as
// the input.
Recurse(fn (Vec<Mesh>) -> Vec<RuleStep>),
// Stop recursing here:
EmptyRule,
}
// TODO: Rename rules?
struct RuleStep {
// The 'final' geometry generated at this step.
geom: Mesh,
// The 'seed' geometry from this step. If recursion stops
// (whether because rule is EmptyRule or because recursion depth
// has been hit), this will be transformed with 'xform' and
// appended with 'geom'. If recursion continues, this geometry is
// passed as the input to the next rule. (TODO: rule_to_mesh
// needs to do the 'recursion stops' part.)
//
// This is in the coordinate space that 'rule' should run in -
// thus, if it is transformed with 'xform', it will be in the same
// coordinate space as 'geom'.
seeds: Vec<Mesh>,
// The next rule to run. If EmptyRule, then stop here (and
// 'xform' is irrelevant).
rule: Box<Rule>,
// The transformation which puts 'seeds' and any geometry from
// 'rule' (if applicable) into the same coordinate space as
// 'geom'.
xform: Mat4,
}
// is there a better way to do this?
fn empty_mesh() -> Mesh {
MeshBuilder::new().with_indices(vec![]).with_positions(vec![]).build().unwrap()
}
fn curve_horn_start(_v: Vec<Mesh>) -> Vec<RuleStep> {
// Seed is a square in XY, sidelength 1, centered at (0,0,0):
let seed = {
let indices: Vec<u32> = vec![0, 1, 2, 0, 2, 3];
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0];
let mut s = MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
s.apply_transformation(Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
s
};
vec![
// Since neither of the other two rules *start* with geometry:
RuleStep { geom: seed.clone(),
rule: Box::new(Rule::EmptyRule),
xform: Matrix4::identity(),
seeds: vec![]
},
// Recurse in both directions:
RuleStep { geom: empty_mesh(),
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
xform: Matrix4::identity(),
seeds: vec![seed.clone()],
},
RuleStep { geom: empty_mesh(),
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
xform: Matrix4::from_angle_y(Rad::turn_div_2()),
seeds: vec![seed.clone()],
},
]
}
use std::convert::TryFrom;
fn curve_horn_thing_rule(v: Vec<Mesh>) -> Vec<RuleStep> {
let gen_geom = |seed: &Mesh| -> RuleStep {
let mut mesh = seed.clone();
let m: Mat4 = Matrix4::from_angle_y(Rad(0.1)) *
Matrix4::from_scale(0.95) *
Matrix4::from_translation(vec3(0.0, 0.0, 0.2));
let r = Rule::Recurse(curve_horn_thing_rule);
mesh.apply_transformation(m);
//let seed2 = mesh.clone();
// Put all vertices together:
let mut pos = seed.positions_buffer();
pos.append(&mut mesh.positions_buffer());
let num_verts = seed.no_vertices();
let mut indices: Vec<u32> = vec![0; 2 * num_verts * 3];
let nv2 = u32::try_from(num_verts).unwrap();
// TODO: don't I need to check if these are boundary edges or
// something? I have to be traversing in some kind of sane
// order!
for i in 0..num_verts {
let j = u32::try_from(i).unwrap();
let k = u32::try_from(num_verts + i).unwrap();
// First triangle:
indices[6*i + 0] = j;
indices[6*i + 1] = (j + 1) % nv2;
indices[6*i + 2] = k;
// Second triangle:
indices[6*i + 3] = j; // k;
indices[6*i + 4] = (j + 1) % nv2; // j + 1;
indices[6*i + 5] = k; // (k + 1) % (2 * nv2);
}
// TODO: Above needs some clarity
// (also, to be fixed)
let joined = match MeshBuilder::new().with_positions(pos).with_indices(indices).build() {
Ok(m) => m,
Err(error) => {
panic!("Error building mesh: {:?}", error)
},
};
RuleStep { geom: joined, rule: Box::new(r), xform: m, seeds: vec![seed.clone()] }
};
// Since 'mesh' is computed directly by applying 'm' to 'seed',
// trivially, we follow the requirement in a RuleStep that
// applying 'xform' to 'seeds' puts it into the same space as
// 'geom'.
// TODO: If I transform a clone of the seed then this will leave
// the vertices in the same order and preserve things like
// boundaries. I would then need to copy positions_buffer for
// both the seed and the transformed seed (to give the vertices),
// and use this in conjuction with my own indices in order to do
// the zig-zag connection
// DEBUG
/*
for seed in &v {
let boundary = seed.edge_iter().filter(|e| seed.is_edge_on_boundary(*e));
for halfedge_id in boundary {
let (v1, v2) = seed.edge_vertices(halfedge_id);
println!("Boundary half-edge {}, verts {} & {}",
halfedge_id, v1, v2);
}
// So, I have my boundary edges in no particular order.
// I suppose I could use a Walker to give some order.
//
// But: how do I then connect these vertices up? I can easily
// get boundary vertices and make something based on those but
// that then limits me to the 'cage' thing I was stuck with
// prior.
}
*/
v.iter().map(gen_geom).collect()
}
// Assume v0, v1, and v2 are non-collinear points. This tries to
// produce a transform which treats v0 as the origin of a new
// coordinate system, the line from v0 to v1 as the new X axis, the Y
// axis perpendicular to this along the plane that (v0,v1,v2) forms,
// and the Z axis the normal of this same plane.
//
// Scale is taken into account (to the extent that the length of
// (v1-v0) is taken as distance 1 in the new coordinate system).
fn points_to_xform(v0: Point3<f64>, v1: Point3<f64>, v2: Point3<f64>) -> Mat4 {
let x: Vec3 = v1 - v0;
let xn: Vec3 = x.normalize();
let zn: Vec3 = x.cross(v2 - v0).normalize();
let yn: Vec3 = zn.cross(xn);
let s = x.magnitude();
let _m: Mat4 = Matrix4::from_cols(
(xn*s).extend(0.0), // new X
(yn*s).extend(0.0), // new Y
(zn*s).extend(0.0), // new Z
v0.to_homogeneous(), // translation
);
return _m;
}
fn cube_thing_rule(_v: Vec<Mesh>) -> Vec<RuleStep> {
let mesh = MeshBuilder::new().cube().build().unwrap();
// Quarter-turn in radians:
let qtr = Rad::turn_div_4();
// Each element of this turns to a branch for the recursion:
let turns: Vec<Mat4> = vec![
Matrix4::identity(),
Matrix4::from_angle_y(qtr),
Matrix4::from_angle_y(qtr * 2.0),
Matrix4::from_angle_y(qtr * 3.0),
Matrix4::from_angle_z(qtr),
Matrix4::from_angle_z(-qtr),
];
let gen_rulestep = |rot: &Mat4| -> RuleStep {
let m: Mat4 = rot *
Matrix4::from_scale(0.5) *
Matrix4::from_translation(vec3(6.0, 0.0, 0.0));
let r = Rule::Recurse(cube_thing_rule);
let mut m2 = mesh.clone();
m2.apply_transformation(m);
RuleStep { geom: m2, rule: Box::new(r), xform: m, seeds: vec![] }
};
// TODO: Why is 'mesh' present in each RuleStep? This is just
// duplicate geometry! Either 'm' applies to 'mesh' (and the
// definition of RuleStep changes) - or 'mesh' needs to already be
// transformed.
turns.iter().map(gen_rulestep).collect()
}
struct MeshBound<'a> {
m: &'a Mesh,
start: HalfEdgeID,
cur: HalfEdgeID,
}
impl<'a> MeshBound<'a> {
fn new(m: &'a Mesh) -> Option<MeshBound> {
for halfedge_id in m.edge_iter() {
if m.is_edge_on_boundary(halfedge_id) {
return Some(MeshBound {
m: m,
start: halfedge_id,
cur: halfedge_id,
});
}
}
return None;
}
}
impl<'a> Iterator for MeshBound<'a> {
type Item = HalfEdgeID;
fn next(&mut self) -> Option<Self::Item> {
// Start from self.cur.
// Pick a vertex. (Doesn't matter which, as long as consistent.)
// Step to all *other* half-edges.
// Find the one that is a boundary.
//
// Update 'cur' to this half-edge.
let (v1, v2) = self.m.edge_vertices(self.cur);
// TODO: v1 or v2?
for halfedge_id in self.m.vertex_halfedge_iter(v1) {
if self.m.is_edge_on_boundary(halfedge_id) {
if self.start == halfedge_id {
// If we are walking the boundary and reach the
// starting edge again, we're done:
break;
}
// Otherwise, yield the next edge:
self.cur = halfedge_id;
return Some(halfedge_id);
}
}
return None;
}
}
//fn mesh_boundary(m: &Mesh) -> Vec<tri_mesh::HalfEdgeID> {
//}
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
// could end up having a lot of identical geometry that need not be
// duplicated until it is transformed into the global space.
//
// This might produce bigger gains if I rewrite rule_to_mesh so that
// rather than repeatedly transforming meshes, it stacks
// transformations and then applies them all at once.
fn rule_to_mesh(rule: &Rule, seed: Vec<Mesh>, iters_left: u32) -> (Mesh, u32) {
let mut mesh = MeshBuilder::new().with_indices(vec![]).with_positions(vec![]).build().unwrap();
let mut nodes: u32 = 1;
if iters_left <= 0 {
return (mesh, nodes);
}
match rule {
Rule::Recurse(func) => {
for step in func(seed) {
let subrule: Rule = *step.rule;
let subxform: Mat4 = step.xform;
let geom: Mesh = step.geom;
mesh.append(&geom);
let (mut submesh, subnodes) = rule_to_mesh(
&subrule, step.seeds, iters_left - 1);
submesh.apply_transformation(subxform);
nodes += subnodes;
mesh.append(&submesh);
}
}
Rule::EmptyRule => {
// do nothing
}
}
(mesh, nodes)
}
fn print_vector(v: &Vec4) -> String {
return format!("{},{},{},{}", v.x, v.y, v.z, v.w);
}
fn print_matrix(m: &Mat4) {
let mt = m.transpose();
println!("[{}]\n[{}]\n[{}]\n[{}]",
print_vector(&mt.x), print_vector(&mt.y),
print_vector(&mt.z), print_vector(&mt.w));
}
fn main() {
// Construct any mesh, this time, we will construct a simple icosahedron
let mesh = MeshBuilder::new().icosahedron().build().unwrap();
// Compute the extreme coordinates which defines the axis aligned bounding box..
let (_min_coordinates, _max_coordinates) = mesh.extreme_coordinates();
// .. or construct an actual mesh representing the axis aligned bounding box
let _aabb = mesh.axis_aligned_bounding_box();
let xform = points_to_xform(
Point3::new(0.5, 0.5, 0.0),
Point3::new(-0.5, 0.5, 0.0),
Point3::new(2.0, -4.0, 0.0),
);
println!("points_to_xform:");
print_matrix(&xform);
// Export the bounding box to an obj file
std::fs::write("foo.obj", mesh.parse_as_obj()).unwrap();
let r = Rule::Recurse(cube_thing_rule);
let max_iters = 2;
println!("Running rules...");
let (cubemesh, nodes) = rule_to_mesh(&r, vec![], max_iters);
println!("Collected {} nodes, produced {} faces, {} vertices",
nodes, cubemesh.no_faces(), cubemesh.no_vertices());
println!("Writing OBJ...");
std::fs::write("cubemesh.obj", cubemesh.parse_as_obj()).unwrap();
let r2 = Rule::Recurse(curve_horn_start);
println!("Running rules...");
// Seed:
let seed = {
let indices: Vec<u32> = vec![0, 1, 2, 2, 1, 3];
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0];
let mut s = MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
s.apply_transformation(Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
s
};
// TODO: Something is wrong here
let mb = MeshBound::new(&seed);
for bound_edge in mb {
println!("Boundary edge: {}", bound_edge);
}
let (mesh, nodes) = rule_to_mesh(&r2, vec![seed], 75);
println!("Collected {} nodes, produced {} faces, {} vertices",
nodes, mesh.no_faces(), mesh.no_vertices());
println!("Writing OBJ...");
std::fs::write("curve_horn_thing.obj", mesh.parse_as_obj()).unwrap();
// TODO: Can I make the seed geometry part of the rule itself?
}