prosha/src/examples.rs
2020-03-27 19:26:06 -04:00

558 lines
19 KiB
Rust

use std::rc::Rc;
use nalgebra::*;
//pub mod examples;
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex, transform};
use crate::rule::{Rule, RuleEval, Child};
use crate::prim;
use crate::util;
use crate::scratch;
fn cube_thing() -> Rule {
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let turns: Vec<Mat4> = vec![
geometry::Transform3::identity().to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
];
let gen_xform = |rot: &Mat4| -> Mat4 {
(rot *
Matrix4::new_scaling(0.5) *
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous())
};
let rec = move |self_: Rc<Rule>| -> RuleEval {
let xforms = turns.iter().map(gen_xform);
RuleEval {
geom: prim::cube(),
final_geom: prim::empty_mesh(),
children: xforms.map(move |xf| Child {
rule: self_.clone(),
xf: xf,
vmap: vec![],
}).collect(),
}
};
// I can't really do *mutual* recursion with the above, can I? I'd
// need actual functions for that.
// "Constants" outside the closure only work the way I think they
// should work if:
// - they're actually static
// - they implement Copy
// - the closure can move them
Rule { eval: Box::new(rec) }
}
/*
#[derive(Copy, Clone)]
struct CurveHorn {
seed: [Vertex; 4],
id_xform: Mat4,
flip180: Mat4,
incr: Mat4,
}
impl CurveHorn {
fn test_thing(&self) {
let f: Box<dyn Fn() -> RuleEval> = Box::new(move || self.do_nothing());
println!("{:p}", f);
}
fn do_nothing(&self) -> RuleEval {
RuleEval {
geom: prim::empty_mesh(),
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Box::new(move || self.do_nothing()) },
xf: self.id_xform,
vmap: vec![0,1,2,3],
},
],
}
}
fn init() -> Rule {
let y = &Vector3::y_axis();
let c = CurveHorn {
seed: [
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
],
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::y_axis(),
std::f32::consts::PI).to_homogeneous(),
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
};
Rule { eval: Box::new(move || c.do_nothing()) }
}
}
fn start(&self) -> RuleEval {
RuleEval {
geom: OpenMesh {
verts: self.seed.to_vec(),
faces: vec![],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Box::new(move || self.recur()) },
xf: self.id_xform,
vmap: vec![0,1,2,3],
},
Child {
rule: Rule { eval: Box::new(move || self.recur()) },
xf: self.flip180,
vmap: vec![3,2,1,0],
},
],
}
}
fn recur(&self) -> RuleEval {
let verts = self.seed.clone();
let next_verts: Vec<Vertex> = transform(&verts, &self.incr);
let geom = OpenMesh {
verts: next_verts.clone(),
faces: vec![
// The below is just connecting two groups of 4 vertices
// each, straight across and then to the next.
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
// TODO: I should really generate these, not hard-code them.
],
};
// TODO: This could be made slightly nicer by taking it to a peak
// instead of just flattening it in XY, but this is a pretty minor
// change.
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval{
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Box::new(move || self.recur()) },
xf: self.incr,
vmap: vec![0,1,2,3],
},
],
}
}
}
struct CubeThing {
}
impl CubeThing {
fn init() -> Rule {
let c = CubeThing {};
Rule { eval: Box::new(|| c.rec()) }
}
fn rec(&self) -> RuleEval {
let mesh = prim::cube();
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let turns: Vec<Mat4> = vec![
geometry::Transform3::identity().to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
];
let gen_rulestep = |rot: &Mat4| -> Child {
let m: Mat4 = rot *
Matrix4::new_scaling(0.5) *
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
Child {
rule: Rule { eval: Box::new(|| self.rec()) },
xf: m,
vmap: vec![],
}
};
RuleEval {
geom: mesh,
final_geom: prim::empty_mesh(),
children: turns.iter().map(gen_rulestep).collect(),
}
}
}
struct RamHorn {
}
impl RamHorn {
fn init() -> Rule {
let r = RamHorn{};
Rule { eval: Box::new(|| r.start()) }
}
// Conversion from Python & automata_scratch
fn start(&self) -> RuleEval {
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
((geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
Matrix4::new_scaling(0.5) *
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
};
RuleEval {
geom: OpenMesh {
verts: vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 1.0), // 8
// 'Bottom' vertices:
vertex(-0.5, -0.5, 0.0), // 9
vertex(-0.5, 0.5, 0.0), // 10
vertex( 0.5, 0.5, 0.0), // 11
vertex( 0.5, -0.5, 0.0), // 12
],
faces: vec![
// bottom face:
Tag::Body(9), Tag::Body(10), Tag::Body(11),
Tag::Body(9), Tag::Body(11), Tag::Body(12),
// two faces straddling edge from vertex 0:
Tag::Body(9), Tag::Body(0), Tag::Body(4),
Tag::Body(9), Tag::Body(7), Tag::Body(0),
// two faces straddling edge from vertex 1:
Tag::Body(10), Tag::Body(1), Tag::Body(5),
Tag::Body(10), Tag::Body(4), Tag::Body(1),
// two faces straddling edge from vertex 2:
Tag::Body(11), Tag::Body(2), Tag::Body(6),
Tag::Body(11), Tag::Body(5), Tag::Body(2),
// two faces straddling edge from vertex 3:
Tag::Body(12), Tag::Body(3), Tag::Body(7),
Tag::Body(12), Tag::Body(6), Tag::Body(3),
// four faces from edge (0,1), (1,2), (2,3), (3,0):
Tag::Body(9), Tag::Body(4), Tag::Body(10),
Tag::Body(10), Tag::Body(5), Tag::Body(11),
Tag::Body(11), Tag::Body(6), Tag::Body(12),
Tag::Body(12), Tag::Body(7), Tag::Body(9),
],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Box::new(|| self.ram_horn()) },
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rule { eval: Box::new(|| self.ram_horn()) },
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rule { eval: Box::new(|| self.ram_horn()) },
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rule { eval: Box::new(|| self.ram_horn()) },
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
],
}
}
fn ram_horn(&self) -> RuleEval {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
Matrix4::new_scaling(0.9);
let seed = vec![
vertex(-0.5, -0.5, 1.0),
vertex(-0.5, 0.5, 1.0),
vertex( 0.5, 0.5, 1.0),
vertex( 0.5, -0.5, 1.0),
];
let next = transform(&seed, &incr);
let geom = OpenMesh {
verts: next,
faces: vec![
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
],
};
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval {
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Box::new(|| self.ram_horn()) },
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
}
}
*/
// Meant to be a copy of twist_from_gen from Python & automata_scratch
fn twist(f: f32, subdiv: usize) -> Rule {
// TODO: Clean this code up. It was a very naive conversion from
// the non-closure version.
let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous();
let seed = transform(&vec![
vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5),
], &xf);
let seed_sub = util::subdivide_cycle(&seed, subdiv);
let dx0: f32 = 2.0;
let dy: f32 = 0.1/f;
let ang: f32 = 0.1/f;
let count: usize = 4;
let n = seed_sub.len();
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = Vector3::y_axis();
let incr = geometry::Translation3::new(-dx0, 0.0, 0.0).to_homogeneous() *
geometry::Rotation3::from_axis_angle(&y, ang).to_homogeneous() *
geometry::Translation3::new(dx0, dy, 0.0).to_homogeneous();
let seed_orig = transform(&seed, &incr);
let seed_sub = util::subdivide_cycle(&seed_orig, subdiv);
let geom = OpenMesh {
verts: seed_sub.clone(),
faces: util::parallel_zigzag_faces(n),
};
let (vc, faces) = util::connect_convex(&seed_sub, true);
let final_geom = OpenMesh {
verts: vec![vc],
faces: faces.clone(),
};
let recur = move |self_: Rc<Rule>| -> RuleEval {
// TODO: Why clone geometry here if I just have to clone it
// later on? Seems like Rc may be much easier (if I can't
// borrow directly - which is probably the case).
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
},
],
}
};
let start = move |self_: Rc<Rule>| -> RuleEval {
let xform = |i| {
(geometry::Rotation3::from_axis_angle(&y, qtr * (i as f32)).to_homogeneous() *
geometry::Translation3::new(dx0, 0.0, 0.0).to_homogeneous())
};
// First generate 'count' children, each one shifted/rotated
// differently:
let children: Vec<Child> = (0..count).map(|i| {
let xf = xform(i);
Child {
rule: Rc::new(Rule { eval: Box::new(recur.clone()) }),
xf: xf,
vmap: ((n+1)*i..(n+1)*(i+count)).collect(), // N.B.
// note n+1, not n. the +1 is for the centroid below
}
}).collect();
// Use byproducts of this to make 'count' copies of 'seed' with
// this same transform:
let meshes = children.iter().map(|child| {
let mut vs = transform(&seed_sub, &child.xf);
// and in the process, generate faces for these seeds:
let (centroid, f) = util::connect_convex(&vs, false);
vs.push(centroid);
OpenMesh { verts: vs, faces: f }
});
RuleEval {
geom: OpenMesh::append(meshes),
final_geom: prim::empty_mesh(),
children: children,
}
};
Rule { eval: Box::new(start) }
}
pub fn main() {
/*
{
let vs = vec![
vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5),
];
let vs2 = util::subdivide_cycle(&vs, 2);
println!("vs={:?}", vs);
println!("vs2={:?}", vs2);
}
fn run_test(r: Rule, iters: u32, name: &str) {
println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh(iters);
println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name);
println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap();
}
fn run_test_iter(r: Rule, iters: usize, name: &str) {
println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh_iter(iters);
println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name);
println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap();
}
*/
fn run_test_iter(r: &Rc<Rule>, iters: usize, name: &str) {
println!("Running {}...", name);
let (mesh, nodes) = Rule::to_mesh_iter(r.clone(), iters);
println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name);
println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap();
}
/*
run_test(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing");
// this can't work on its own because the resultant OpenMesh still
// has parent references:
//run_test(Rule { eval: recur }, 100, "curve_horn_thing");
run_test(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2");
run_test(RamHorn::init(), Rule { eval: RamHorn::start }, 200, "ram_horn");
run_test(Twist::init(), Rule { eval: Twist::start }, 200, "twist");
*/
//run_test_iter(CubeThing::init(), 3, "cube_thing2");
//run_test_iter(CurveHorn::init(), 100, "curve_horn2_iter");
//run_test_iter(RamHorn::init(), 100, "ram_horn2");
// TODO: If I increase the above from 100 to ~150, Blender reports
// that the very tips are non-manifold. I am wondering if this is
// some sort of numerical precision issue.
//run_test_iter(Twist::init(1.0, 2), 100, "twist");
// This is a stress test:
// let f = 20;
// run_test_iter(Twist::init(f as f32, 32), 100*f, "twist2");
run_test_iter(&Rc::new(cube_thing()), 3, "cube_thing3");
run_test_iter(&Rc::new(twist(1.0, 2)), 100, "twist");
if false
{
let a = vec![1,2,3];
let c = move || {
println!("c: a={:?}", a);
};
let r: Rc<dyn Fn()> = Rc::new(c);
// But this will fail at the function calls below:
//let r: Rc<dyn FnOnce()> = Rc::new(c);
let r2 = r.clone();
println!("strong_count={}", Rc::strong_count(&r2));
println!("weak_count={}", Rc::weak_count(&r2));
r2();
r();
let a2 = vec![1,2,3];
let c2 = move || {
println!("c2: a2={:?}", a2);
};
let b: Box<dyn FnOnce()> = Box::new(c2);
b();
}
}