prosha/src/examples.rs
2020-10-04 12:11:02 -04:00

1440 lines
47 KiB
Rust

use std::rc::Rc;
use std::f32::consts::{FRAC_PI_2, FRAC_PI_3};
use std::f32;
use nalgebra::*;
use rand::Rng;
use crate::util;
use crate::util::VecExt;
use crate::mesh::{Mesh, MeshFunc, VertexUnion, vert_args};
use crate::xform::{Transform, Vertex, vertex, id};
use crate::rule::{Rule, RuleFn, RuleEval, Child};
use crate::prim;
use crate::dcel;
use crate::dcel::{VertSpec};
pub fn cube_thing() -> Rule<()> {
// Quarter-turn in radians:
let qtr = FRAC_PI_2;
//let x = &Vector3::x_axis();
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let id = Transform::new();
let turns: Vec<Transform> = vec![
id.clone(),
id.rotate(y, qtr),
id.rotate(y, qtr * 2.0),
id.rotate(y, qtr * 3.0),
id.rotate(z, qtr),
id.rotate(z, -qtr),
];
let rec = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let xforms = turns.iter().map(|xf| xf.scale(0.5).translate(6.0, 0.0, 0.0));
RuleEval {
geom: Rc::new(prim::cube().to_meshfunc()),
final_geom: Rc::new(prim::empty_mesh().to_meshfunc()),
children: xforms.map(move |xf| Child {
rule: self_.clone(),
xf: xf,
arg_vals: vec![],
}).collect(),
}
};
Rule { eval: Rc::new(rec), ctxt: () }
}
pub fn barbs(random: bool) -> Rule<()> {
let (b0, bn);
let base_verts: Vec<VertexUnion> = vec_indexed![
@b0 VertexUnion::Vertex(vertex(-0.5, -0.5, 0.0)),
VertexUnion::Vertex(vertex(-0.5, 0.5, 0.0)),
VertexUnion::Vertex(vertex( 0.5, 0.5, 0.0)),
VertexUnion::Vertex(vertex( 0.5, -0.5, 0.0)),
@bn,
];
let barb_incr = |random| {
if random {
let t = rand::thread_rng().gen_range(0.45, 0.55);
let s = rand::thread_rng().gen_range(0.7, 0.9);
let ry = rand::thread_rng().gen_range(-0.3, -0.1);
let rx = rand::thread_rng().gen_range(-0.04, 0.04);
let rz = rand::thread_rng().gen_range(-0.04, 0.04);
id().translate(0.0, 0.0, t).
rotate(&Vector3::y_axis(), ry).
rotate(&Vector3::x_axis(), rx).
rotate(&Vector3::z_axis(), rz).
scale(s)
} else {
id().translate(0.0, 0.0, 0.5).
rotate(&Vector3::y_axis(), -0.2).
scale(0.8)
}
};
let barb = rule_fn!(() => |self_, base_verts| {
let mut next_verts = base_verts;
let (a0, a1) = next_verts.append_indexed(vert_args(0..4));
let geom = util::parallel_zigzag(next_verts, b0..bn, a0..a1);
let final_geom = MeshFunc {
verts: vert_args(0..4),
faces: vec![ 0, 2, 1, 0, 3, 2 ],
};
let b = barb_incr(random);
RuleEval {
geom: Rc::new(geom.transform(&b)),
final_geom: Rc::new(final_geom), // no transform needed (no vertices)
children: vec![ child_iter!(self_, b, b0..bn) ],
}
});
let main_barb_xf = |i| {
id().rotate(&Vector3::z_axis(), -FRAC_PI_2 * (i as f32)).
rotate(&Vector3::y_axis(), -FRAC_PI_2).
translate(0.5, 0.0, 0.5)
};
let main_incr = |random| {
if random {
//let t = rand::thread_rng().gen_range(0.75, 1.25);
let s = rand::thread_rng().gen_range(0.85, 1.10);
let rz = rand::thread_rng().gen_range(0.05, 0.25);
let rx = rand::thread_rng().gen_range(0.08, 0.12);
id().translate(0.0, 0.0, 1.0).
rotate(&Vector3::z_axis(), rz).
rotate(&Vector3::x_axis(), rx).
scale(s)
} else {
id().translate(0.0, 0.0, 1.0).
rotate(&Vector3::z_axis(), 0.15).
rotate(&Vector3::x_axis(), 0.1).
scale(0.95)
}
};
let main = rule_fn!(() => |self_, base_verts| {
let mut next_verts = base_verts;
let (a0, _) = next_verts.append_indexed(vert_args(0..4));
// This contributes no faces of its own - just vertices.
let geom = MeshFunc { verts: next_verts.clone(), faces: vec![] };
// (unless recursion ends here, of course)
let final_geom = MeshFunc {
verts: vert_args(0..4),
faces: vec![ 0, 2, 1, 0, 3, 2 ],
};
RuleEval {
geom: Rc::new(geom),
final_geom: Rc::new(final_geom),
children: vec![
child_iter!(self_, main_incr(random), b0..bn),
child!(rule!(barb, ()), main_barb_xf(0), b0 + 0, b0 + 1, a0 + 1, a0 + 0),
child!(rule!(barb, ()), main_barb_xf(1), b0 + 1, b0 + 2, a0 + 2, a0 + 1),
child!(rule!(barb, ()), main_barb_xf(2), b0 + 2, b0 + 3, a0 + 3, a0 + 2),
child!(rule!(barb, ()), main_barb_xf(3), b0 + 3, b0 + 0, a0 + 0, a0 + 3),
// TODO: Factor out repetition?
],
}
});
let base = rule_fn!(() => |_s, base_verts| {
RuleEval {
geom: Rc::new(MeshFunc {
verts: base_verts,
faces: vec![ b0, b0 + 1, b0 + 2, b0, b0 + 2, b0 + 3 ],
}),
// TODO: This might be buggy and leave some vertices lying around
final_geom: Rc::new(prim::empty_meshfunc()),
children: vec![ child_iter!(rule!(main, ()), id(), b0..bn) ],
}
});
//rule!(Rc::new(base), ())
Rule { eval: base, ctxt: () }
}
pub fn sierpinski() -> Rule<()> {
// Initial height step:
let dz = 0.10;
// 'Extra' z rotation (0.0 for normal Sierpinski)
let dr = 0.1;
// Scale factor (0.5 for normal Sierpinski)
let s = 0.51;
let rt3 = (3.0).sqrt();
// Indices:
// b+0,b+1,b+2 = base vertices
// t+0,t+1,t+2 = 'top' vertices above base
// tm01, tm12, tm20 = midpoints of (t0,t1), (t1,t2), (t2,t0).
let (b, t, tm01, tm12, tm20, n);
let base_verts: Vec<VertexUnion> = {
let v0 = vertex(rt3/3.0, 0.0, 0.0);
let v1 = vertex(-rt3/6.0, 1.0/2.0, 0.0);
let v2 = vertex(-rt3/6.0, -1.0/2.0, 0.0);
let v0b = v0 + vertex(0.0, 0.0, dz);
let v1b = v1 + vertex(0.0, 0.0, dz);
let v2b = v2 + vertex(0.0, 0.0, dz);
vec_indexed![
@b VertexUnion::Vertex(v0),
VertexUnion::Vertex(v1),
VertexUnion::Vertex(v2),
@t VertexUnion::Vertex(v0b),
VertexUnion::Vertex(v1b),
VertexUnion::Vertex(v2b),
@tm01 VertexUnion::Vertex((v0b+v1b)/2.0),
@tm12 VertexUnion::Vertex((v1b+v2b)/2.0),
@tm20 VertexUnion::Vertex((v2b+v0b)/2.0),
@n,
]
};
let tri_split = move |i| {
let rt3 = (3.0).sqrt();
let angle = 2.0 * FRAC_PI_3 * (i as f32) + dr;
id().
rotate(&Vector3::z_axis(), angle).
translate(rt3/12.0, 0.0, 0.0).
scale(s).
translate(0.0, 0.0, dz)
};
let split = rule_fn!(() => |_s, base_verts| {
let mut next_verts = base_verts.clone();
let (a0, _) = next_verts.append_indexed(vert_args(0..3));
RuleEval {
geom: Rc::new(MeshFunc {
verts: next_verts,
faces: vec![
//a0, a0+1, a0+2,
// Outer:
tm01, a0+1, t+1,
tm01, t+0, a0+0,
tm01, a0+0, a0+1,
tm12, a0+2, t+2,
tm12, t+1, a0+1,
tm12, a0+1, a0+2,
tm20, a0+0, t+0,
tm20, t+2, a0+2,
tm20, a0+2, a0+0,
// Inner:
tm01, tm12, tm20,
],
}),
final_geom: Rc::new(MeshFunc {
verts: vert_args(0..n), // just duplicate same verts
faces: vec![
t+0, tm01, tm20,
t+1, tm12, tm01,
t+2, tm20, tm12,
],
}),
children: vec![
child!(_s, tri_split(0), t+0, tm01, tm20),
child!(_s, tri_split(1), t+1, tm12, tm01),
child!(_s, tri_split(2), t+2, tm20, tm12),
],
}
});
let base = rule_fn!(() => |_s, base_verts| {
RuleEval {
geom: Rc::new(MeshFunc {
verts: base_verts,
faces: vec![
// Outer:
tm01, b+1, t+1,
tm01, t+0, b+0,
tm01, b+0, b+1,
tm12, b+2, t+2,
tm12, t+1, b+1,
tm12, b+1, b+2,
tm20, b+0, t+0,
tm20, t+2, b+2,
tm20, b+2, b+0,
// Inner:
tm01, tm12, tm20,
// Bottom:
b+2, b+1, b+0,
],
}),
final_geom: Rc::new(MeshFunc {
verts: vec![],
faces: vec![],
}),
children: vec![
child!(rule!(split, ()), tri_split(0), t+0, tm01, tm20),
child!(rule!(split, ()), tri_split(1), t+1, tm12, tm01),
child!(rule!(split, ()), tri_split(2), t+2, tm20, tm12),
],
}
});
Rule { eval: base, ctxt: () }
}
/*
// Meant to be a copy of twist_from_gen from Python &
// automata_scratch, but has since acquired a sort of life of its own
pub fn twist(f: f32, subdiv: usize) -> Rule<()> {
// TODO: Clean this code up. It was a very naive conversion from
// the non-closure version.
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.7);
let seed = {
let s = vec![vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5)];
util::subdivide_cycle(&xf.transform(&s), subdiv)
};
let n = seed.len();
let dx0: f32 = 2.0;
let dy: f32 = 0.1/f;
let ang: f32 = 0.1/f;
let count: usize = 4;
// Quarter-turn in radians:
let qtr = FRAC_PI_2;
let y = Vector3::y_axis();
let incr_inner = Transform::new().translate(-dx0, 0.0, 0.0).rotate(&y, ang).translate(dx0, dy, 0.0);
let incr_outer = Transform::new().translate(-dx0*2.0, 0.0, 0.0).rotate(&y, ang/2.0).translate(dx0*2.0, dy, 0.0);
let seed2 = seed.clone();
// TODO: Why do I need the above?
// TODO: Could a macro get rid of some of this or would it just be
// equally cumbersome because I'd have to sort of pass 'seed'
// explicitly?
let recur = move |incr: Transform| -> RuleFn<()> {
let seed_next = incr.transform(&seed2);
//let vc = util::centroid(&seed_next);
//let faces = util::connect_convex(0..n, n, true);
let geom = util::parallel_zigzag(seed_next, 0..n, 0..n);
let final_geom = MeshFunc {
verts: vec![],
faces: vec![],
// TODO: get actual verts here
};
let c = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
arg_vals: (0..n).collect(),
},
],
}
};
Rc::new(c)
};
// TODO: Can a macro do anything to clean up some of the
// repetition with HOFs & closures?
let start = move |_| -> RuleEval<()> {
let child = |incr, dx, i, ang0, div| -> (MeshFunc, Child<()>) {
let xform = Transform::new().
rotate(&y, ang0 + (qtr / div * (i as f32))).
translate(dx, 0.0, 0.0);
let c = Child {
rule: Rc::new(Rule { eval: (recur.clone())(incr), ctxt: () }),
// TODO: Cleanliness fix - can macros clean up above?
xf: xform,
arg_vals: (0..(n+1)).collect(),
// N.B. n+1, not n. the +1 is for the centroid below.
};
let mut vs = xform.transform(&seed);
// and in the process, generate faces for these seeds:
let (centroid, f) = util::connect_convex(&vs, false);
vs.push(centroid);
(MeshFunc { verts: vs, faces: f }, c)
};
// Generate 'count' children, shifted/rotated differently:
let inner = (0..count).map(|i| child(incr_inner, dx0, i, 0.0, 1.0));
//let outer = (0..count).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
let outer = (0..0).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
RuleEval::from_pairs(inner.chain(outer), prim::empty_mesh())
};
Rule { eval: Rc::new(start), ctxt: () }
}
*/
/*
#[derive(Copy, Clone)]
pub struct NestSpiral2Ctxt {
init: bool,
stack: [Transform; 2],
}
pub fn nest_spiral_2() -> Rule<NestSpiral2Ctxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let seed = util::subdivide_cycle(&seed, subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: vec![],
faces: faces,
});
let rad = 1.0;
let dz = 0.1;
let rz = 0.1;
let rad2 = 4.0;
let rz2 = 0.1;
let recur = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
//let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: NestSpiral2Ctxt {
init: false,
stack: [
Transform::new().rotate(z, rz2) * stack[0],
Transform::new().translate(0.0, 0.0, dz).rotate(z, rz) * stack[1],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n).collect(),
},
],
}
}
};
let count = 3;
let r = Rc::new(recur);
let start = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
let z = &Vector3::z_axis();
let child = |i: usize| -> Child<NestSpiral2Ctxt> {
let ang = PI * 2.0 * (i as f32) / (count as f32);
Child {
rule: Rc::new(Rule {
eval: r.clone(),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [
Transform::new().translate(rad2, 0.0, 0.0),
Transform::new().rotate(z, ang).translate(rad, 0.0, 0.0),
],
},
}),
xf: Transform::new(),
arg_vals: vec![], // no parent vertices
}
};
RuleEval {
geom: Rc::new(prim::empty_mesh()),
final_geom: Rc::new(prim::empty_mesh()),
children: (0..count).map(child).collect(),
}
};
Rule {
eval: Rc::new(start),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [ // doesn't matter
Transform::new(),
Transform::new(),
],
},
}
}
#[derive(Copy, Clone)]
pub struct TorusCtxt {
init: bool,
count: usize,
stack: [Transform; 3],
}
pub fn twisty_torus() -> Rule<TorusCtxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.9);
let seed = util::subdivide_cycle(&xf.transform(&seed), subdiv);
let n = seed.len();
let geom = util::parallel_zigzag(seed, 0..n, n..(2*n));
// TODO: where are parent Args?
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n+1)).collect(),
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let rad3 = 24.0;
let rz3 = 0.0004;
let dx = 0.00;
let rx = 0.01;
let rz = 0.30;
let ang = 0.1;
let recur = move |self_: Rc<Rule<TorusCtxt>>| -> RuleEval<TorusCtxt> {
let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let count = self_.ctxt.count;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: TorusCtxt {
init: false,
count: count + 1,
stack: [
Transform::new().rotate(z, rz3) * stack[0],
Transform::new().translate(dx, 0.0, 0.0).rotate(x, rx) * stack[1],
Transform::new().rotate(z, rz) * stack[2],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n).collect(),
},
],
}
}
};
Rule {
eval: Rc::new(recur),
ctxt: TorusCtxt {
init: true,
count: 0,
stack: [
Transform::new().translate(0.0, rad3, 0.0),
Transform::new().translate(0.0, rad2, 0.0),
Transform::new().translate(rad, 0.0, 0.0),
],
},
}
}
*/
/*
pub fn twisty_torus_hardcode() -> Rule<()> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.9);
let seed = util::subdivide_cycle(&xf.transform(&seed), subdiv);
let incr = Transform { mtx: Mat4::from_vec(vec![
0.955234, 0.29576725, -0.0070466697, 0.0,
-0.29581502, 0.9552189, -0.007100463, 0.0,
0.004630968, 0.008867174, 0.99994993, 0.0,
-0.034161568, 0.290308, 0.07295418, 0.9999999,
])};
let n = seed.len();
let next = incr.transform(&seed);
let geom = Rc::new(util::zigzag_to_parent(next.clone(), n));
let (vc, faces) = util::connect_convex(&next, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n+1)).collect(), // TODO: Fix parent/connect_convex
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let rad3 = 24.0;
let start = Transform::new().translate(0.0, rad3, 0.0) * Transform::new().translate(0.0, rad2, 0.0) * Transform::new().translate(rad, 0.0, 0.0);
let recur = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
arg_vals: (0..n).collect(),
},
],
}
};
let start = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: incr,
arg_vals: (0..n2).collect(),
},
],
}
};
Rule {
eval: Rc::new(start),
ctxt: (),
}
}
// This was a mistake that I'd like to understand later:
#[derive(Copy, Clone)]
pub struct WindChimeCtxt {
init: bool,
count: usize,
stack: [Transform; 3],
}
pub fn wind_chime_mistake_thing() -> Rule<WindChimeCtxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let seed = util::subdivide_cycle(&seed, subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n + 1)).collect(), // TODO: Check with parents (zigzag/connect_convex)
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let dx0 = 2.0;
let ang = 0.1;
let recur = move |self_: Rc<Rule<WindChimeCtxt>>| -> RuleEval<WindChimeCtxt> {
let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let count = self_.ctxt.count;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: WindChimeCtxt {
init: false,
count: count + 1,
stack: [
Transform::new().rotate(x, 0.01) * stack[0],
// stack[0], //Transform::new().rotate(z, 0.05 * (count as f32)).translate(0.0, rad2, 0.0),
Transform::new().rotate(z, 0.30) * stack[1],
Transform::new().translate(0.1, 0.0, 0.0) * stack[2],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
arg_vals: (0..n).collect(),
},
],
}
}
};
Rule {
eval: Rc::new(recur),
ctxt: WindChimeCtxt {
init: true,
count: 0,
stack: [
Transform::new().translate(0.0, rad2, 0.0),
Transform::new().translate(rad, 0.0, 0.0),
Transform::new(), // .translate(dx0, 0.0, 0.0),
],
},
}
}
*/
pub fn ramhorn() -> Rule<()> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8).
rotate(&v, 0.3).
scale(0.9);
let (a0, a1, a2, a3, s4, s5, s6, s7);
let seed = vec_indexed![
@a0 VertexUnion::Arg(0),
@a1 VertexUnion::Arg(1),
@a2 VertexUnion::Arg(2),
@a3 VertexUnion::Arg(3),
@s4 VertexUnion::Vertex(vertex(-0.5, -0.5, 1.0)),
@s5 VertexUnion::Vertex(vertex(-0.5, 0.5, 1.0)),
@s6 VertexUnion::Vertex(vertex( 0.5, 0.5, 1.0)),
@s7 VertexUnion::Vertex(vertex( 0.5, -0.5, 1.0)),
];
let geom = MeshFunc {
verts: seed,
faces: vec![
s5, a0, s4,
a1, a0, s5,
s6, a1, s5,
a2, a1, s6,
s7, a2, s6,
a3, a2, s7,
s4, a3, s7,
a0, a3, s4,
],
};
let final_geom = MeshFunc {
verts: vert_args(s4..s7),
// TODO: Factor out this repetition
faces: vec![
0, 2, 1,
0, 3, 2,
],
};
let geom2 = Rc::new(geom.transform(&incr));
let fgeom2 = Rc::new(final_geom);
let recur = rule_fn!(() => |self_, geom2, fgeom2| {
RuleEval {
geom: geom2,
final_geom: fgeom2,
children: vec![
child!(self_, incr, s4, s5, s6, s7),
],
}
});
let opening_xform = |i| {
let r = FRAC_PI_2 * (i as f32);
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 1.0).
scale(0.5).
translate(0.0, 0.0, -1.0)
};
let start = move |_| -> RuleEval<()> {
RuleEval {
geom: Rc::new(MeshFunc {
verts: vec![
// 'Top' vertices:
VertexUnion::Vertex(vertex(-0.5, -0.5, 1.0)), // 0 (above 9)
VertexUnion::Vertex(vertex(-0.5, 0.5, 1.0)), // 1 (above 10)
VertexUnion::Vertex(vertex( 0.5, 0.5, 1.0)), // 2 (above 11)
VertexUnion::Vertex(vertex( 0.5, -0.5, 1.0)), // 3 (above 12)
// Top edge midpoints:
VertexUnion::Vertex(vertex(-0.5, 0.0, 1.0)), // 4 (connects 0-1)
VertexUnion::Vertex(vertex( 0.0, 0.5, 1.0)), // 5 (connects 1-2)
VertexUnion::Vertex(vertex( 0.5, 0.0, 1.0)), // 6 (connects 2-3)
VertexUnion::Vertex(vertex( 0.0, -0.5, 1.0)), // 7 (connects 3-0)
// Top middle:
VertexUnion::Vertex(vertex( 0.0, 0.0, 1.0)), // 8
// 'Bottom' vertices:
VertexUnion::Vertex(vertex(-0.5, -0.5, 0.0)), // 9
VertexUnion::Vertex(vertex(-0.5, 0.5, 0.0)), // 10
VertexUnion::Vertex(vertex( 0.5, 0.5, 0.0)), // 11
VertexUnion::Vertex(vertex( 0.5, -0.5, 0.0)), // 12
],
faces: vec![
// bottom face:
9, 10, 11,
9, 11, 12,
// two faces straddling edge from vertex 0:
9, 0, 4,
9, 7, 0,
// two faces straddling edge from vertex 1:
10, 1, 5,
10, 4, 1,
// two faces straddling edge from vertex 2:
11, 2, 6,
11, 5, 2,
// two faces straddling edge from vertex 3:
12, 3, 7,
12, 6, 3,
// four faces from edge (0,1), (1,2), (2,3), (3,0):
9, 4, 10,
10, 5, 11,
11, 6, 12,
12, 7, 9,
],
}),
final_geom: Rc::new(prim::empty_mesh().to_meshfunc()),
children: vec![
child!(rule!(recur, ()), opening_xform(0), 5, 2, 6, 8),
child!(rule!(recur, ()), opening_xform(1), 4, 1, 5, 8),
child!(rule!(recur, ()), opening_xform(2), 7, 0, 4, 8),
child!(rule!(recur, ()), opening_xform(3), 6, 3, 7, 8),
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
],
}
};
Rule { eval: Rc::new(start), ctxt: () }
}
#[derive(Copy, Clone)]
pub struct RamHornCtxt {
depth: usize,
}
pub fn ramhorn_branch(depth: usize, f: f32) -> Rule<RamHornCtxt> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8 * f).
rotate(&v, 0.4 * f).
scale(1.0 - (1.0 - 0.95)*f);
let (a0, s0, sn);
let seed = vec_indexed![
@a0 VertexUnion::Arg(0),
VertexUnion::Arg(1),
VertexUnion::Arg(2),
VertexUnion::Arg(3),
@s0 VertexUnion::Vertex(vertex(-0.5, -0.5, 0.0)),
VertexUnion::Vertex(vertex(-0.5, 0.5, 0.0)),
VertexUnion::Vertex(vertex( 0.5, 0.5, 0.0)),
VertexUnion::Vertex(vertex( 0.5, -0.5, 0.0)),
@sn,
];
let geom = util::parallel_zigzag(seed.clone(), s0..sn, a0..s0).transform(&incr);
let final_geom = MeshFunc {
verts: seed.clone(),
faces: vec![
s0 + 0, s0 + 2, s0 + 1,
s0 + 0, s0 + 3, s0 + 2,
],
}.transform(&incr);
// TODO: Why is this redundant transform needed?
let opening_xform = |i| {
let r = FRAC_PI_2 * (i as f32);
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 0.0).
scale(0.5)
};
// 'transition' geometry (when something splits):
let (v0, v1, v2, v3, m01, m12, m23, m30, mid);
let trans_verts = vec_indexed![
VertexUnion::Arg(0),
VertexUnion::Arg(1),
VertexUnion::Arg(2),
VertexUnion::Arg(3),
// 'Top' vertices:
@v0 VertexUnion::Vertex(vertex(-0.5, -0.5, 0.0)), // 0 (above 9)
@v1 VertexUnion::Vertex(vertex(-0.5, 0.5, 0.0)), // 1 (above 10)
@v2 VertexUnion::Vertex(vertex( 0.5, 0.5, 0.0)), // 2 (above 11)
@v3 VertexUnion::Vertex(vertex( 0.5, -0.5, 0.0)), // 3 (above 12)
// Top edge midpoints:
@m01 VertexUnion::Vertex(vertex(-0.5, 0.0, 0.0)), // 4 (connects 0-1)
@m12 VertexUnion::Vertex(vertex( 0.0, 0.5, 0.0)), // 5 (connects 1-2)
@m23 VertexUnion::Vertex(vertex( 0.5, 0.0, 0.0)), // 6 (connects 2-3)
@m30 VertexUnion::Vertex(vertex( 0.0, -0.5, 0.0)), // 7 (connects 3-0)
// Top middle:
@mid VertexUnion::Vertex(vertex( 0.0, 0.0, 0.0)), // 8
];
let trans_faces = vec![
// two faces straddling edge from vertex 0:
0, 4, 8,
0, 11, 4,
// two faces straddling edge from vertex 1:
1, 5, 9,
1, 8, 5,
// two faces straddling edge from vertex 2:
2, 6, 10,
2, 9, 6,
// two faces straddling edge from vertex 3:
3, 7, 11,
3, 10, 7,
// four faces from edge (0,1), (1,2), (2,3), (3,0):
0, 8, 1,
1, 9, 2,
2, 10, 3,
3, 11, 0,
];
let trans_geom = MeshFunc {
verts: trans_verts.clone(),
faces: trans_faces.clone(),
};
let trans_children = move |recur: RuleFn<RamHornCtxt>, ctxt: RamHornCtxt| {
vec![
child!(rule!(recur, ctxt), opening_xform(0), m12, v2, m23, mid),
child!(rule!(recur, ctxt), opening_xform(1), m01, v1, m12, mid),
child!(rule!(recur, ctxt), opening_xform(2), m30, v0, m01, mid),
child!(rule!(recur, ctxt), opening_xform(3), m23, v3, m30, mid),
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
]
};
let tg = Rc::new(trans_geom);
let fg = Rc::new(final_geom);
let g = Rc::new(geom);
// TODO: Why is that necessary?
let recur = rule_fn!(RamHornCtxt => |self_, tg| {
if self_.ctxt.depth <= 0 {
RuleEval {
geom: tg,
final_geom: fg.clone(),
// This final_geom will leave midpoint/centroid
// vertices, but stopping here means none are
// connected anyway - so they can just be ignored.
children: trans_children(self_.eval.clone(), RamHornCtxt { depth }),
}
} else {
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: RamHornCtxt { depth: self_.ctxt.depth - 1 },
};
RuleEval {
geom: g.clone(),
final_geom: fg.clone(),
children: vec![
child!(Rc::new(next_rule), incr, s0, s0+1, s0+2, s0+3),
],
}
}
});
let trans = rule_fn!(RamHornCtxt => |self_| {
RuleEval {
geom: tg.clone(),
final_geom: Rc::new(prim::empty_mesh().to_meshfunc()),
children: trans_children(recur.clone(), self_.ctxt),
}
});
let start = rule_fn!(RamHornCtxt => |self_, seed| {
let g = MeshFunc {
verts: seed[s0..sn].to_vec(),
// FIXME (use names for indices)
faces: vec![
0, 1, 2,
0, 2, 3,
],
}.transform(&id().translate(0.0, 0.0, -0.5));
RuleEval {
geom: Rc::new(g),
final_geom: Rc::new(prim::empty_mesh().to_meshfunc()),
children: vec![
child!(rule!(trans, self_.ctxt), id(), 0, 1, 2, 3),
],
}
});
Rule { eval: start, ctxt: RamHornCtxt { depth } }
}
/*
#[derive(Copy, Clone)]
pub struct RamHornCtxt2 {
depth: usize,
}
pub fn ramhorn_branch_random(depth: usize, f: f32) -> Rule<RamHornCtxt2> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8 * f).
rotate(&v, 0.4 * f).
scale(1.0 - (1.0 - 0.95)*f);
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
verts: next,
faces: util::parallel_zigzag_faces(4),
alias_verts: vec![],
// TODO: Fix parents with parallel_zigzag
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
alias_verts: vec![0, 1, 2, 3],
faces: vec![
0, 2, 1,
0, 3, 2,
],
});
let opening_xform = |i| {
let r = FRAC_PI_2 * i;
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 0.0).
scale(0.5)
};
// 'transition' geometry (when something splits):
let trans_verts = vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 0.0), // 0 (above 9)
vertex(-0.5, 0.5, 0.0), // 1 (above 10)
vertex( 0.5, 0.5, 0.0), // 2 (above 11)
vertex( 0.5, -0.5, 0.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 0.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 0.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 0.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 0.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 0.0), // 8
];
let trans_faces = vec![
// two faces straddling edge from vertex 0:
0, 4, 8,
0, 11, 4,
// two faces straddling edge from vertex 1:
1, 5, 9,
1, 8, 5,
// two faces straddling edge from vertex 2:
2, 6, 10,
2, 9, 6,
// two faces straddling edge from vertex 3:
3, 7, 11,
3, 10, 7,
// four faces from edge (0,1), (1,2), (2,3), (3,0):
0, 8, 1,
1, 9, 2,
2, 10, 3,
3, 11, 0,
];
let trans_geom = Rc::new(OpenMesh {
alias_verts: vec![0, 1, 2, 3],
verts: trans_verts.clone(),
faces: trans_faces.clone(),
});
let trans_children = move |recur: RuleFn<RamHornCtxt2>, ctxt: RamHornCtxt2| {
vec![
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(0.0),
arg_vals: vec![5,2,6,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(1.0),
arg_vals: vec![4,1,5,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(2.0),
arg_vals: vec![7,0,4,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(3.0),
arg_vals: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
// TODO: Factor out the repetition here.
]
};
let tg = trans_geom.clone();
// TODO: Why is that necessary?
let recur = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
if self_.ctxt.depth <= 0 {
let d2 = rand::thread_rng().gen_range(2, 60);
RuleEval {
geom: tg.clone(),
final_geom: final_geom.clone(),
// This final_geom will leave midpoint/centroid
// vertices, but stopping here means none are
// connected anyway - so they can just be ignored.
children: trans_children(self_.eval.clone(), RamHornCtxt2 { depth: d2 }),
}
} else {
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: RamHornCtxt2 { depth: self_.ctxt.depth - 1 },
};
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: incr,
arg_vals: vec![0,1,2,3],
},
],
}
}
};
let trans = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: trans_geom.clone(),
final_geom: Rc::new(prim::empty_mesh()),
children: trans_children(Rc::new(recur.clone()), self_.ctxt),
}
};
let start = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: Transform::new().translate(0.0, 0.0, -0.5).transform(&seed),
alias_verts: vec![],
faces: vec![
0, 1, 2,
0, 2, 3,
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(trans.clone()), ctxt: self_.ctxt }),
xf: Transform::new(),
arg_vals: vec![0,1,2,3],
},
],
}
};
Rule { eval: Rc::new(start), ctxt: RamHornCtxt2 { depth } }
}
*/
/*
#[derive(Copy, Clone)]
struct CurveHorn {
seed: [Vertex; 4],
id_xform: Mat4,
flip180: Mat4,
incr: Mat4,
}
impl CurveHorn {
fn test_thing(&self) {
let f: Box<dyn Fn() -> RuleEval> = Rc::new(move || self.do_nothing());
println!("{:p}", f);
}
fn do_nothing(&self) -> RuleEval {
RuleEval {
geom: prim::empty_mesh(),
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.do_nothing()) },
xf: self.id_xform,
arg_vals: vec![0,1,2,3],
},
],
}
}
fn init() -> Rule {
let y = &Vector3::y_axis();
let c = CurveHorn {
seed: [
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
],
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::y_axis(),
PI).to_homogeneous(),
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
};
Rule { eval: Rc::new(move || c.do_nothing()) }
}
}
fn start(&self) -> RuleEval {
RuleEval {
geom: OpenMesh {
verts: self.seed.to_vec(),
faces: vec![],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.id_xform,
arg_vals: vec![0,1,2,3],
},
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.flip180,
arg_vals: vec![3,2,1,0],
},
],
}
}
fn recur(&self) -> RuleEval {
let verts = self.seed.clone();
let next_verts: Vec<Vertex> = transform(&verts, &self.incr);
let geom = OpenMesh {
verts: next_verts.clone(),
faces: vec![
// The below is just connecting two groups of 4 vertices
// each, straight across and then to the next.
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
// TODO: I should really generate these, not hard-code them.
],
};
// TODO: This could be made slightly nicer by taking it to a peak
// instead of just flattening it in XY, but this is a pretty minor
// change.
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval{
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.incr,
arg_vals: vec![0,1,2,3],
},
],
}
}
}
*/
pub fn test_parametric() -> Mesh {
let base_verts: Vec<Vertex> = vec![
vertex(-1.0, -1.0, 0.0),
vertex(-1.0, 1.0, 0.0),
vertex( 1.0, 1.0, 0.0),
vertex( 1.0, -1.0, 0.0),
];
let base_verts = util::subdivide_cycle(&base_verts, 2);
//let base_verts = util::subdivide_cycle(&base_verts, 16);
let t0 = 0.0;
let t1 = 15.0;
let xform = |t: f32| -> Transform {
id().
translate(0.0, 0.0, t/5.0).
rotate(&Vector3::z_axis(), -t/2.0).
scale((0.8).powf(t))
};
crate::rule::parametric_mesh(base_verts, xform, t0, t1, 0.01)
}
pub fn test_dcel(fname: &str) {
let mut mesh: dcel::DCELMesh<Vertex> = dcel::DCELMesh::new();
let (f1, _) = mesh.add_face([
VertSpec::New(vertex(-0.5, -0.5, 0.0)),
VertSpec::New(vertex(-0.5, 0.5, 0.0)),
VertSpec::New(vertex( 0.5, 0.5, 0.0)),
]);
mesh.check();
let (f2, edges) = mesh.add_face_twin1(mesh.faces[f1].halfedge, vertex(0.0, 0.0, 1.0));
mesh.check();
// From add_face_twin1, edges[0] is always the 'shared' edge:
let edge = edges[0];
let twin = {
let he = &mesh.halfedges[edge];
if he.has_twin {
he.twin_halfedge
} else {
panic!("Can't find shared edge!");
}
};
println!("Shared edges = {},{}", edge, twin);
let ep = mesh.halfedges[edge].prev_halfedge;
let en = mesh.halfedges[edge].next_halfedge;
let tp = mesh.halfedges[twin].prev_halfedge;
let tn = mesh.halfedges[twin].next_halfedge;
println!("Connecting halfedges: {} and {}, {} and {}", en, tp, tn, ep);
println!("DCEL mesh = {}", mesh);
// As we're making *twin* halfedges, we go against the edge
// direction:
let (f3, _) = mesh.add_face_twin2(en, tp);
mesh.check();
let (f4, _) = mesh.add_face_twin2(tn, ep);
mesh.check();
println!("f1 verts: {:?}", mesh.face_to_verts(f1));
println!("f2 verts: {:?}", mesh.face_to_verts(f2));
println!("f3 verts: {:?}", mesh.face_to_verts(f3));
println!("f4 verts: {:?}", mesh.face_to_verts(f4));
//println!("DCEL mesh: ");
//mesh.print();
let faces = mesh.full_subdiv_face(f1, vec![
vertex(-0.5, 0.0, 0.0),
vertex(0.0, 0.5, 0.0),
vertex(0.0, 0.0, 0.0),
]);
println!("full_subdiv_face returned: {:?}", faces);
//println!("DCEL mesh after subdiv");
//mesh.check();
//mesh.print();
let mesh_conv = mesh.convert_mesh(|i| i);
println!("Mesh = {:?}", mesh_conv);
mesh_conv.write_stl_file(fname).unwrap();
}