prosha/src/examples.rs
2020-05-12 18:47:29 -04:00

1244 lines
39 KiB
Rust

use std::rc::Rc;
use nalgebra::*;
use rand::Rng;
use crate::util;
use crate::util::VecExt;
use crate::mesh::{Mesh, MeshFunc, VertexUnion};
use crate::xform::{Transform, Vertex, vertex, Mat4};
use crate::rule::{Rule, RuleFn, RuleEval, Child};
use crate::prim;
/*
pub fn cube_thing() -> Rule<()> {
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
//let x = &Vector3::x_axis();
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let id = Transform::new();
let turns: Vec<Transform> = vec![
id.clone(),
id.rotate(y, qtr),
id.rotate(y, qtr * 2.0),
id.rotate(y, qtr * 3.0),
id.rotate(z, qtr),
id.rotate(z, -qtr),
];
let rec = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let xforms = turns.iter().map(|xf| xf.scale(0.5).translate(6.0, 0.0, 0.0));
RuleEval {
geom: Rc::new(prim::cube()),
final_geom: Rc::new(prim::empty_mesh()),
children: xforms.map(move |xf| Child {
rule: self_.clone(),
xf: xf,
vmap: vec![],
}).collect(),
}
};
Rule { eval: Rc::new(rec), ctxt: () }
}
*/
pub fn barbs() -> Rule<()> {
let (b0, b1);
let base_verts: Vec<VertexUnion> = vec_indexed![
@b0: VertexUnion::Vertex(vertex(-0.5, -0.5, 0.0)),
VertexUnion::Vertex(vertex(-0.5, 0.5, 0.0)),
VertexUnion::Vertex(vertex( 0.5, 0.5, 0.0)),
@b1: VertexUnion::Vertex(vertex( 0.5, -0.5, 0.0)),
];
let n = base_verts.len();
let incr: Transform = Transform::new().
translate(0.0, 0.0, 1.0).
rotate(&Vector3::z_axis(), 0.1).
scale(0.95);
let b = base_verts.clone();
let barb = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let mut next_verts = b.clone();
let (a0, a1) = next_verts.append_indexed(
&mut (0..4).map(|i| VertexUnion::Arg(i)).collect()
);
let geom = util::parallel_zigzag(next_verts.clone(), b0..b1, a0..a1);
/*let (vc, faces) = util::connect_convex(&next_verts, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: vec![],
faces: faces,
});
*/
RuleEval {
geom: Rc::new(geom.transform(&incr)),
final_geom: Rc::new(prim::empty_meshfunc()), // TODO
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
}
]
}
};
let b = base_verts.clone();
let main = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let mut next_verts = b.clone();
let (a0, a1) = next_verts.append_indexed(
&mut (0..4).map(|i| VertexUnion::Arg(i)).collect()
);
// TODO: Once I start doing the barbs this will go away
let geom = util::parallel_zigzag(next_verts.clone(), b0..b1+1, a0..a1);
/*
let (vc, faces) = util::connect_convex(&next_verts, true);
let final_geom = Rc::new(MeshFunc {
verts: vec![vc],
faces: faces,
});
*/
RuleEval {
geom: Rc::new(geom.transform(&incr)),
final_geom: Rc::new(prim::empty_meshfunc()), // TODO
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
}
]
}
};
let main_ = Rc::new(main);
let base = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: Rc::new(MeshFunc {
verts: base_verts.clone(),
faces: vec![
b0, b0 + 1, b0 + 2,
b0, b0 + 2, b0 + 3,
],
}),
final_geom: Rc::new(prim::empty_meshfunc()),
children: vec![
Child {
rule: Rc::new(Rule { eval: main_.clone(), ctxt: () }),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
};
Rule { eval: Rc::new(base), ctxt: () }
}
/*
// Meant to be a copy of twist_from_gen from Python &
// automata_scratch, but has since acquired a sort of life of its own
pub fn twist(f: f32, subdiv: usize) -> Rule<()> {
// TODO: Clean this code up. It was a very naive conversion from
// the non-closure version.
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.7);
let seed = {
let s = vec![vertex(-0.5, 0.0, -0.5),
vertex( 0.5, 0.0, -0.5),
vertex( 0.5, 0.0, 0.5),
vertex(-0.5, 0.0, 0.5)];
util::subdivide_cycle(&xf.transform(&s), subdiv)
};
let n = seed.len();
let dx0: f32 = 2.0;
let dy: f32 = 0.1/f;
let ang: f32 = 0.1/f;
let count: usize = 4;
// Quarter-turn in radians:
let qtr = std::f32::consts::FRAC_PI_2;
let y = Vector3::y_axis();
let incr_inner = Transform::new().translate(-dx0, 0.0, 0.0).rotate(&y, ang).translate(dx0, dy, 0.0);
let incr_outer = Transform::new().translate(-dx0*2.0, 0.0, 0.0).rotate(&y, ang/2.0).translate(dx0*2.0, dy, 0.0);
let seed2 = seed.clone();
// TODO: Why do I need the above?
// TODO: Could a macro get rid of some of this or would it just be
// equally cumbersome because I'd have to sort of pass 'seed'
// explicitly?
let recur = move |incr: Transform| -> RuleFn<()> {
let seed_next = incr.transform(&seed2);
let geom = Rc::new(util::zigzag_to_parent(seed_next.clone(), n));
// TODO: Cleanliness fix - why not just make these return meshes?
let (vc, faces) = util::connect_convex(&seed_next, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: vec![],
faces: faces,
});
let c = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
},
],
}
};
Rc::new(c)
};
// TODO: Can a macro do anything to clean up some of the
// repetition with HOFs & closures?
let start = move |_| -> RuleEval<()> {
let child = |incr, dx, i, ang0, div| -> (OpenMesh, Child<()>) {
let xform = Transform::new().
rotate(&y, ang0 + (qtr / div * (i as f32))).
translate(dx, 0.0, 0.0);
let c = Child {
rule: Rc::new(Rule { eval: (recur.clone())(incr), ctxt: () }),
// TODO: Cleanliness fix - can macros clean up above?
xf: xform,
vmap: (0..(n+1)).collect(),
// N.B. n+1, not n. the +1 is for the centroid below.
};
let mut vs = xform.transform(&seed);
// and in the process, generate faces for these seeds:
let (centroid, f) = util::connect_convex(&vs, false);
vs.push(centroid);
(OpenMesh { verts: vs, faces: f, alias_verts: vec![] }, c)
};
// Generate 'count' children, shifted/rotated differently:
let inner = (0..count).map(|i| child(incr_inner, dx0, i, 0.0, 1.0));
//let outer = (0..count).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
let outer = (0..0).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
RuleEval::from_pairs(inner.chain(outer), prim::empty_mesh())
};
Rule { eval: Rc::new(start), ctxt: () }
}
#[derive(Copy, Clone)]
pub struct NestSpiral2Ctxt {
init: bool,
stack: [Transform; 2],
}
pub fn nest_spiral_2() -> Rule<NestSpiral2Ctxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let seed = util::subdivide_cycle(&seed, subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: vec![],
faces: faces,
});
let rad = 1.0;
let dz = 0.1;
let rz = 0.1;
let rad2 = 4.0;
let rz2 = 0.1;
let recur = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
//let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: NestSpiral2Ctxt {
init: false,
stack: [
Transform::new().rotate(z, rz2) * stack[0],
Transform::new().translate(0.0, 0.0, dz).rotate(z, rz) * stack[1],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
}
};
let count = 3;
let r = Rc::new(recur);
let start = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
let z = &Vector3::z_axis();
let child = |i: usize| -> Child<NestSpiral2Ctxt> {
let ang = std::f32::consts::PI * 2.0 * (i as f32) / (count as f32);
Child {
rule: Rc::new(Rule {
eval: r.clone(),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [
Transform::new().translate(rad2, 0.0, 0.0),
Transform::new().rotate(z, ang).translate(rad, 0.0, 0.0),
],
},
}),
xf: Transform::new(),
vmap: vec![], // no parent vertices
}
};
RuleEval {
geom: Rc::new(prim::empty_mesh()),
final_geom: Rc::new(prim::empty_mesh()),
children: (0..count).map(child).collect(),
}
};
Rule {
eval: Rc::new(start),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [ // doesn't matter
Transform::new(),
Transform::new(),
],
},
}
}
#[derive(Copy, Clone)]
pub struct TorusCtxt {
init: bool,
count: usize,
stack: [Transform; 3],
}
pub fn twisty_torus() -> Rule<TorusCtxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.9);
let seed = util::subdivide_cycle(&xf.transform(&seed), subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n+1)).collect(),
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let rad3 = 24.0;
let rz3 = 0.0004;
let dx = 0.00;
let rx = 0.01;
let rz = 0.30;
let ang = 0.1;
let recur = move |self_: Rc<Rule<TorusCtxt>>| -> RuleEval<TorusCtxt> {
let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let count = self_.ctxt.count;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: TorusCtxt {
init: false,
count: count + 1,
stack: [
Transform::new().rotate(z, rz3) * stack[0],
Transform::new().translate(dx, 0.0, 0.0).rotate(x, rx) * stack[1],
Transform::new().rotate(z, rz) * stack[2],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
}
};
Rule {
eval: Rc::new(recur),
ctxt: TorusCtxt {
init: true,
count: 0,
stack: [
Transform::new().translate(0.0, rad3, 0.0),
Transform::new().translate(0.0, rad2, 0.0),
Transform::new().translate(rad, 0.0, 0.0),
],
},
}
}
pub fn twisty_torus_hardcode() -> Rule<()> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.9);
let seed = util::subdivide_cycle(&xf.transform(&seed), subdiv);
let incr = Transform { mtx: Mat4::from_vec(vec![
0.955234, 0.29576725, -0.0070466697, 0.0,
-0.29581502, 0.9552189, -0.007100463, 0.0,
0.004630968, 0.008867174, 0.99994993, 0.0,
-0.034161568, 0.290308, 0.07295418, 0.9999999,
])};
let n = seed.len();
let next = incr.transform(&seed);
let geom = Rc::new(util::zigzag_to_parent(next.clone(), n));
let (vc, faces) = util::connect_convex(&next, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n+1)).collect(), // TODO: Fix parent/connect_convex
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let rad3 = 24.0;
let start = Transform::new().translate(0.0, rad3, 0.0) * Transform::new().translate(0.0, rad2, 0.0) * Transform::new().translate(rad, 0.0, 0.0);
let recur = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
},
],
}
};
let start = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: incr,
vmap: (0..n2).collect(),
},
],
}
};
Rule {
eval: Rc::new(start),
ctxt: (),
}
}
// This was a mistake that I'd like to understand later:
#[derive(Copy, Clone)]
pub struct WindChimeCtxt {
init: bool,
count: usize,
stack: [Transform; 3],
}
pub fn wind_chime_mistake_thing() -> Rule<WindChimeCtxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let seed = util::subdivide_cycle(&seed, subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
alias_verts: (0..(n + 1)).collect(), // TODO: Check with parents (zigzag/connect_convex)
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let dx0 = 2.0;
let ang = 0.1;
let recur = move |self_: Rc<Rule<WindChimeCtxt>>| -> RuleEval<WindChimeCtxt> {
let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let count = self_.ctxt.count;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: WindChimeCtxt {
init: false,
count: count + 1,
stack: [
Transform::new().rotate(x, 0.01) * stack[0],
// stack[0], //Transform::new().rotate(z, 0.05 * (count as f32)).translate(0.0, rad2, 0.0),
Transform::new().rotate(z, 0.30) * stack[1],
Transform::new().translate(0.1, 0.0, 0.0) * stack[2],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f, alias_verts: vec![] };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
}
};
Rule {
eval: Rc::new(recur),
ctxt: WindChimeCtxt {
init: true,
count: 0,
stack: [
Transform::new().translate(0.0, rad2, 0.0),
Transform::new().translate(rad, 0.0, 0.0),
Transform::new(), // .translate(dx0, 0.0, 0.0),
],
},
}
}
pub fn ramhorn() -> Rule<()> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8).
rotate(&v, 0.3).
scale(0.9);
let seed = vec![
vertex(-0.5, -0.5, 1.0),
vertex(-0.5, 0.5, 1.0),
vertex( 0.5, 0.5, 1.0),
vertex( 0.5, -0.5, 1.0),
];
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
alias_verts: vec![0, 1, 2, 3],
verts: next,
faces: vec![
5, 0, 4,
1, 0, 5,
6, 1, 5,
2, 1, 6,
7, 2, 6,
3, 2, 7,
4, 3, 7,
0, 3, 4,
],
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
alias_verts: vec![0, 1, 2, 3],
faces: vec![
0, 2, 1,
0, 3, 2,
],
});
let recur = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
};
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 1.0).
scale(0.5).
translate(0.0, 0.0, -1.0)
};
let start = move |_| -> RuleEval<()> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 1.0), // 8
// 'Bottom' vertices:
vertex(-0.5, -0.5, 0.0), // 9
vertex(-0.5, 0.5, 0.0), // 10
vertex( 0.5, 0.5, 0.0), // 11
vertex( 0.5, -0.5, 0.0), // 12
],
alias_verts: vec![],
faces: vec![
// bottom face:
9, 10, 11,
9, 11, 12,
// two faces straddling edge from vertex 0:
9, 0, 4,
9, 7, 0,
// two faces straddling edge from vertex 1:
10, 1, 5,
10, 4, 1,
// two faces straddling edge from vertex 2:
11, 2, 6,
11, 5, 2,
// two faces straddling edge from vertex 3:
12, 3, 7,
12, 6, 3,
// four faces from edge (0,1, (1,2, (2,3, (3,0):
9, 4, 10,
10, 5, 11,
11, 6, 12,
12, 7, 9,
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
// TODO: Factor out the repetition here.
],
}
};
Rule { eval: Rc::new(start), ctxt: () }
}
#[derive(Copy, Clone)]
pub struct RamHornCtxt {
depth: usize,
}
pub fn ramhorn_branch(depth: usize, f: f32) -> Rule<RamHornCtxt> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8 * f).
rotate(&v, 0.4 * f).
scale(1.0 - (1.0 - 0.95)*f);
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
verts: next,
alias_verts: vec![],
faces: util::parallel_zigzag_faces(4),
// TODO: Fix this (parallel_zigzag_faces has parents)
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
alias_verts: vec![0, 1, 2, 3],
faces: vec![
0, 2, 1,
0, 3, 2,
],
});
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 0.0).
scale(0.5)
};
// 'transition' geometry (when something splits):
let trans_verts = vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 0.0), // 0 (above 9)
vertex(-0.5, 0.5, 0.0), // 1 (above 10)
vertex( 0.5, 0.5, 0.0), // 2 (above 11)
vertex( 0.5, -0.5, 0.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 0.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 0.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 0.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 0.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 0.0), // 8
];
let trans_faces = vec![
// two faces straddling edge from vertex 0:
0, 4, 8,
0, 11, 4,
// two faces straddling edge from vertex 1:
1, 5, 9,
1, 8, 5,
// two faces straddling edge from vertex 2:
2, 6, 10,
2, 9, 6,
// two faces straddling edge from vertex 3:
3, 7, 11,
3, 10, 7,
// four faces from edge (0,1), (1,2), (2,3), (3,0):
0, 8, 1,
1, 9, 2,
2, 10, 3,
3, 11, 0,
];
let trans_geom = Rc::new(OpenMesh {
alias_verts: vec![0, 1, 2, 3],
verts: trans_verts.clone(),
faces: trans_faces.clone(),
});
let trans_children = move |recur: RuleFn<RamHornCtxt>, ctxt: RamHornCtxt| {
vec![
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
// TODO: Factor out the repetition here.
]
};
let tg = trans_geom.clone();
// TODO: Why is that necessary?
let recur = move |self_: Rc<Rule<RamHornCtxt>>| -> RuleEval<RamHornCtxt> {
if self_.ctxt.depth <= 0 {
RuleEval {
geom: tg.clone(),
final_geom: final_geom.clone(),
// This final_geom will leave midpoint/centroid
// vertices, but stopping here means none are
// connected anyway - so they can just be ignored.
children: trans_children(self_.eval.clone(), RamHornCtxt { depth }),
}
} else {
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: RamHornCtxt { depth: self_.ctxt.depth - 1 },
};
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
}
};
let trans = move |self_: Rc<Rule<RamHornCtxt>>| -> RuleEval<RamHornCtxt> {
RuleEval {
geom: trans_geom.clone(),
final_geom: Rc::new(prim::empty_mesh()),
children: trans_children(Rc::new(recur.clone()), self_.ctxt),
}
};
let start = move |self_: Rc<Rule<RamHornCtxt>>| -> RuleEval<RamHornCtxt> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: Transform::new().translate(0.0, 0.0, -0.5).transform(&seed),
alias_verts: vec![],
faces: vec![
0, 1, 2,
0, 2, 3,
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(trans.clone()), ctxt: self_.ctxt }),
xf: Transform::new(),
vmap: vec![0,1,2,3],
},
],
}
};
Rule { eval: Rc::new(start), ctxt: RamHornCtxt { depth } }
}
#[derive(Copy, Clone)]
pub struct RamHornCtxt2 {
depth: usize,
}
pub fn ramhorn_branch_random(depth: usize, f: f32) -> Rule<RamHornCtxt2> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8 * f).
rotate(&v, 0.4 * f).
scale(1.0 - (1.0 - 0.95)*f);
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
verts: next,
faces: util::parallel_zigzag_faces(4),
alias_verts: vec![],
// TODO: Fix parents with parallel_zigzag
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
alias_verts: vec![0, 1, 2, 3],
faces: vec![
0, 2, 1,
0, 3, 2,
],
});
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 0.0).
scale(0.5)
};
// 'transition' geometry (when something splits):
let trans_verts = vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 0.0), // 0 (above 9)
vertex(-0.5, 0.5, 0.0), // 1 (above 10)
vertex( 0.5, 0.5, 0.0), // 2 (above 11)
vertex( 0.5, -0.5, 0.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 0.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 0.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 0.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 0.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 0.0), // 8
];
let trans_faces = vec![
// two faces straddling edge from vertex 0:
0, 4, 8,
0, 11, 4,
// two faces straddling edge from vertex 1:
1, 5, 9,
1, 8, 5,
// two faces straddling edge from vertex 2:
2, 6, 10,
2, 9, 6,
// two faces straddling edge from vertex 3:
3, 7, 11,
3, 10, 7,
// four faces from edge (0,1), (1,2), (2,3), (3,0):
0, 8, 1,
1, 9, 2,
2, 10, 3,
3, 11, 0,
];
let trans_geom = Rc::new(OpenMesh {
alias_verts: vec![0, 1, 2, 3],
verts: trans_verts.clone(),
faces: trans_faces.clone(),
});
let trans_children = move |recur: RuleFn<RamHornCtxt2>, ctxt: RamHornCtxt2| {
vec![
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
// TODO: Factor out the repetition here.
]
};
let tg = trans_geom.clone();
// TODO: Why is that necessary?
let recur = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
if self_.ctxt.depth <= 0 {
let d2 = rand::thread_rng().gen_range(2, 60);
RuleEval {
geom: tg.clone(),
final_geom: final_geom.clone(),
// This final_geom will leave midpoint/centroid
// vertices, but stopping here means none are
// connected anyway - so they can just be ignored.
children: trans_children(self_.eval.clone(), RamHornCtxt2 { depth: d2 }),
}
} else {
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: RamHornCtxt2 { depth: self_.ctxt.depth - 1 },
};
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
}
};
let trans = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: trans_geom.clone(),
final_geom: Rc::new(prim::empty_mesh()),
children: trans_children(Rc::new(recur.clone()), self_.ctxt),
}
};
let start = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: Transform::new().translate(0.0, 0.0, -0.5).transform(&seed),
alias_verts: vec![],
faces: vec![
0, 1, 2,
0, 2, 3,
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(trans.clone()), ctxt: self_.ctxt }),
xf: Transform::new(),
vmap: vec![0,1,2,3],
},
],
}
};
Rule { eval: Rc::new(start), ctxt: RamHornCtxt2 { depth } }
}
*/
/*
#[derive(Copy, Clone)]
struct CurveHorn {
seed: [Vertex; 4],
id_xform: Mat4,
flip180: Mat4,
incr: Mat4,
}
impl CurveHorn {
fn test_thing(&self) {
let f: Box<dyn Fn() -> RuleEval> = Rc::new(move || self.do_nothing());
println!("{:p}", f);
}
fn do_nothing(&self) -> RuleEval {
RuleEval {
geom: prim::empty_mesh(),
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.do_nothing()) },
xf: self.id_xform,
vmap: vec![0,1,2,3],
},
],
}
}
fn init() -> Rule {
let y = &Vector3::y_axis();
let c = CurveHorn {
seed: [
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
],
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
&nalgebra::Vector3::y_axis(),
std::f32::consts::PI).to_homogeneous(),
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
};
Rule { eval: Rc::new(move || c.do_nothing()) }
}
}
fn start(&self) -> RuleEval {
RuleEval {
geom: OpenMesh {
verts: self.seed.to_vec(),
faces: vec![],
},
final_geom: prim::empty_mesh(),
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.id_xform,
vmap: vec![0,1,2,3],
},
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.flip180,
vmap: vec![3,2,1,0],
},
],
}
}
fn recur(&self) -> RuleEval {
let verts = self.seed.clone();
let next_verts: Vec<Vertex> = transform(&verts, &self.incr);
let geom = OpenMesh {
verts: next_verts.clone(),
faces: vec![
// The below is just connecting two groups of 4 vertices
// each, straight across and then to the next.
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
// TODO: I should really generate these, not hard-code them.
],
};
// TODO: This could be made slightly nicer by taking it to a peak
// instead of just flattening it in XY, but this is a pretty minor
// change.
let final_geom = OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
};
RuleEval{
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: Rule { eval: Rc::new(move || self.recur()) },
xf: self.incr,
vmap: vec![0,1,2,3],
},
],
}
}
}
*/