use std::borrow::Borrow; use std::rc::Rc; use std::f32; use crate::mesh::{Mesh, MeshFunc, VertexUnion}; use crate::xform::{Transform, Vertex}; pub type RuleFn = Rc>) -> RuleEval>; /// Definition of a rule. In general, a `Rule`: /// /// - produces geometry when it is evaluated /// - tells what other rules to invoke, and what to do with their /// geometry pub struct Rule { pub eval: RuleFn, pub ctxt: S, } // TODO: It may be possible to have just a 'static' rule that requires // no function call. // TODO: Do I benefit with Rc below so Rule can be shared? // TODO: Why *can't* I make this FnOnce? // The above looks like it is going to require a lifetime parameter // regardless, in which case I don't really need Box. /// `RuleEval` supplies the results of evaluating some `Rule` for one /// iteration: it contains the geometry produced at this step /// (`geom`), and it tells what to do next depending on whether /// recursion continues further, or is stopped here (due to hitting /// some limit of iterations or some lower limit on overall scale). /// /// That is: /// - if recursion stops, `final_geom` is connected with `geom`. /// - if recursion continues, the rules of `children` are evaluated, /// and the resultant geometry is transformed and then connected with /// `geom`. pub struct RuleEval { /// The geometry generated at just this iteration pub geom: Rc, /// The "final" geometry that is merged with `geom` via /// `connect()` in the event that recursion stops. This must be /// in the same coordinate space as `geom`. /// /// Parent vertex references will be resolved directly to `geom` /// with no mapping. /// (TODO: Does this make sense? Nowhere else do I treat Arg(n) as /// an index - it's always a positional argument.) pub final_geom: Rc, /// The child invocations (used if recursion continues). The /// 'parent' mesh, from the perspective of all geometry produced /// by `children`, is `geom`. pub children: Vec>, } /// `Child` evaluations, pairing another `Rule` with the /// transformations and parent vertex mappings that should be applied /// to it. pub struct Child { /// Rule to evaluate to produce geometry pub rule: Rc>, /// The transform to apply to all geometry produced by `rule` /// (including its own `geom` and `final_geom` if needed, as well /// as all sub-geometry produced recursively). pub xf: Transform, /// The 'argument values' to apply to vertex arguments of a `MeshFunc` /// from `geom` and `final_geom` that `rule` produces when evaluated. /// The values of this are treated as indices into the parent /// `RuleEval` that produced this `Child`. /// /// In specific: if `arg_vals[i] = j` and `rule` produces some `geom` or /// `final_geom`, then any vertex of `VertexUnion::Arg(i)` will be mapped /// to `geom.verts[j]` in the *parent* geometry. pub arg_vals: Vec, } #[macro_export] macro_rules! child { ( $Rule:expr, $Xform:expr, $( $Arg:expr ),* ) => { Child { rule: /*std::rc::Rc::new*/($Rule).clone(), xf: $Xform, arg_vals: vec![$($Arg,)*], } } } #[macro_export] macro_rules! child_iter { ( $Rule:expr, $Xform:expr, $Args:expr ) => { Child { rule: /*std::rc::Rc::new*/($Rule).clone(), xf: $Xform, arg_vals: $Args.collect(), // does this even need a macro? } } } #[macro_export] macro_rules! rule { ( $RuleFn:expr, $Ctxt:expr ) => { std::rc::Rc::new(Rule { eval: $RuleFn.clone(), ctxt: $Ctxt, }) } } #[macro_export] macro_rules! rule_fn { ( $Ty:ty => |$Self:ident $(,$x:ident)*| $Body:expr ) => { { $(let $x = $x.clone();)* std::rc::Rc::new(move |$Self: std::rc::Rc>| -> RuleEval<$Ty> { $(let $x = $x.clone();)* let $Self = $Self.clone(); $Body }) } } } // TODO: Shouldn't I fully-qualify Rule & RuleEval? // TODO: Document all of the above macros // TODO: Why must I clone twice? impl Rule { /// Convert this `Rule` to mesh data, recursively (depth first). /// `iters_left` sets the maximum recursion depth. This returns /// (geometry, number of rule evaluations). pub fn to_mesh(s: Rc>, iters_left: usize) -> (MeshFunc, usize) { let mut evals = 1; let rs: RuleEval = (s.eval)(s.clone()); if iters_left <= 0 { return ((*rs.final_geom).clone(), 1); // TODO: This is probably wrong because of the way that // sub.arg_vals is used below. final_geom is not supposed to // have any vertex mapping applied. } // TODO: This logic is more or less right, but it // could perhaps use some un-tupling or something. let subgeom: Vec<(MeshFunc, Vec)> = rs.children.iter().map(|sub| { // Get sub-geometry (still un-transformed): let (submesh, eval) = Rule::to_mesh(sub.rule.clone(), iters_left - 1); // Tally up eval count: evals += eval; let m2 = submesh.transform(&sub.xf); (m2, sub.arg_vals.clone()) // TODO: Fix clone? }).collect(); // Connect geometry from this rule (not child rules): return (rs.geom.connect(subgeom).0, evals); } /// This should be identical to to_mesh, but implemented /// iteratively with an explicit stack rather than with recursive /// function calls. pub fn to_mesh_iter(s: Rc>, max_depth: usize) -> (MeshFunc, usize) { struct State { // The set of rules we're currently handling: rules: Vec>, // The next element of 'children' to handle: next: usize, // World transform of the *parent* of 'rules', that is, // not including any transform of any element of 'rules'. xf: Transform, // How many levels 'deeper' can we recurse? depth: usize, } // 'stack' stores at its last element our "current" State in // terms of a current world transform and which Child should // be processed next. Every element prior to this is previous // states which must be kept around for further backtracking // (usually because they involve multiple rules). // // We evaluate our own rule to initialize the stack: let eval = (s.eval)(s.clone()); let mut stack: Vec> = vec![State { rules: eval.children, next: 0, xf: Transform::new(), depth: max_depth, }]; let mut geom = (*eval.geom).clone(); // Number of times we've evaluated a Rule: let mut eval_count = 1; // Stack depth (update at every push & pop): let mut n = stack.len(); while !stack.is_empty() { // s = the 'current' state: let s = &mut stack[n-1]; let depth = s.depth; if s.rules.is_empty() { stack.pop(); n -= 1; continue; } // Evaluate the rule: let child = &s.rules[s.next]; let mut eval = (child.rule.eval)(child.rule.clone()); eval_count += 1; // Make an updated world transform: let xf = s.xf * child.xf; // This rule produced some geometry which we'll // combine with the 'global' geometry: let new_geom = eval.geom.transform(&xf); // See if we can still recurse further: if depth <= 0 { // As we're stopping recursion, we need to connect // final_geom with all else in order to actually close // geometry properly: let final_geom = eval.final_geom.transform(&xf); // TODO: Fix the awful hack below. I do this only to // generate an identity mapping for arg_vals when I don't // actually need arg_vals. let m = { let mut m_ = 0; for v in &final_geom.verts { match *v { VertexUnion::Arg(a) => { if a > m_ { m_ = a; } }, VertexUnion::Vertex(_) => (), } } m_ + 1 }; let arg_vals: Vec = (0..m).collect(); let (geom2, _) = new_geom.connect(vec![(final_geom, arg_vals)]); geom = geom.connect(vec![(geom2, child.arg_vals.clone())]).0; // TODO: Fix clone? // If we end recursion on one child, we must end it // similarly on every sibling (i.e. get its geometry & // final geometry, and merge it in) - so we increment // s.next and let the loop re-run. s.next += 1; if s.next >= s.rules.len() { // Backtrack only at the last child: stack.pop(); n -= 1; } continue; } let (g, offsets) = geom.connect(vec![(new_geom, child.arg_vals.clone())]); geom = g; // 'eval.children' may contain (via 'arg_vals') references to // indices of 'new_geom'. However, we don't connect() to // 'new_geom', but to the global geometry we just merged it // into. To account for this, we must shift 'arg_vals' by // the offset that 'geom.connect' gave us. let off = offsets[0]; // (We pass a one-element vector to geom.connect() above // so offsets always has just one element.) for child in eval.children.iter_mut() { child.arg_vals = child.arg_vals.iter().map(|n| n + off).collect(); } // We're done evaluating this rule, so increment 'next'. // If that was the last rule at this level (i.e. ignoring // eval.children), remove it - we're done with it. s.next += 1; if s.next >= s.rules.len() { stack.pop(); n -= 1; } if !eval.children.is_empty() { // Recurse further (i.e. put more onto stack): stack.push(State { rules: eval.children, next: 0, xf: xf, depth: depth - 1, }); n += 1; } } return (geom, eval_count); } } impl RuleEval { /// Turn an iterator of (MeshFunc, Child) into a single RuleEval. /// All meshes are merged, and the `arg_vals` in each child has the /// correct offsets applied to account for this merge. /// /// (`final_geom` is passed through to the RuleEval unmodified.) pub fn from_pairs(m: T, final_geom: MeshFunc) -> RuleEval where U: Borrow, T: IntoIterator)> { let (meshes, children): (Vec<_>, Vec<_>) = m.into_iter().unzip(); let (mesh, offsets) = MeshFunc::append(meshes); // Patch up arg_vals in each child, and copy everything else: let children2: Vec> = children.iter().zip(offsets.iter()).map(|(c,off)| { Child { rule: c.rule.clone(), xf: c.xf.clone(), // simply add offset: arg_vals: c.arg_vals.iter().map(|i| i + off).collect(), } }).collect(); RuleEval { geom: Rc::new(mesh), final_geom: Rc::new(final_geom), children: children2, } } } // fa001f47d40de989da6963e442f31c278c88abc8 /// Produce a mesh from a starting frame, and a function `f` which produces /// transformations that change continuously over its argument (the range /// of which is given by `t0` and `t1`). By convention, `f(t0)` should /// always produce an identity transformation. /// /// Facetization is guided by the given error, `max_err`, which is treated /// as a distance in 3D space. pub fn parametric_mesh(frame: Vec, f: F, t0: f32, t1: f32, max_err: f32) -> Mesh where F: Fn(f32) -> Transform { let n = frame.len(); // Sanity checks: if t1 <= t0 { panic!("t1 must be greater than t0"); } if n < 3 { panic!("frame must have at least 3 vertices"); } struct FrontierVert { vert: Vertex, // Vertex position t: f32, // Parameter value; f(t) should equal vert frame_idx: usize, // Index of 'frame' this sits in the trajectory of mesh_idx: usize, // Index of this vertex in the mesh neighbor1: usize, // Index of 'frontier' of one neighbor neighbor2: usize, // Index of 'frontier' of other neighbor }; // Init 'frontier' with each 'frame' vertex, and start it at t=t0. let mut frontier: Vec = frame.iter().enumerate().map(|(i,v)| FrontierVert { vert: *v, t: t0, frame_idx: i, mesh_idx: i, neighbor1: (i - 1) % n, neighbor2: (i + 1) % n, }).collect(); // Every vertex in 'frontier' has a trajectory it follows - which is // simply the position as we transform the original vertex by f(t), // and increment t through the range [t0, t1]. // // The goal is to advance the vertices, one at a time, building up // new triangles every time we advance one, until each vertex // reaches t=t1 - in a way that forms the mesh we want. // That mesh will be built up here, starting with frame vertices: // (note initial value of mesh_idx) let mut verts: Vec = frame.clone(); let mut faces: Vec = vec![]; while !frontier.is_empty() { // Pick a vertex to advance. // // Heuristic for now: pick the 'furthest back' (lowest t) let (i,v) = frontier.iter().enumerate().min_by(|(_,f), (_, g)| f.t.partial_cmp(&g.t).unwrap_or(std::cmp::Ordering::Equal)).unwrap(); // TODO: Make this less ugly? if v.t >= t1 { break; } println!("DEBUG: Moving vertex {}, {:?} (t={}, frame_idx={})", i, v.vert, v.t, v.frame_idx); let mut dt = (t1 - t0) / 100.0; let vf = frame[v.frame_idx]; for iter in 0..100 { // Consider an edge from f(v.t)*vf to f(v.t + dt)*vf. // These two endpoints have zero error from the trajectory // (because they are directly on it). // // If we assume some continuity in f, then we can guess that // the worst error occurs at the midpoint of the edge: let edge_mid = 0.5*(f(v.t).mtx + f(v.t + dt).mtx)*vf; // ...relative to the trajectory midpoint: let traj_mid = f(v.t + dt/2.0).mtx * vf; let err = (edge_mid - traj_mid).norm(); println!("DEBUG iter {}: dt={}, edge_mid={:?}, traj_mid={:?}, err={}", iter, dt, edge_mid, traj_mid, err); let r = (err - max_err).abs() / max_err; if r < 0.10 { println!("err close enough"); break; } else if err > max_err { dt = dt / 2.0; println!("err > max_err, reducing dt to {}", dt); } else { dt = dt * 1.2; println!("err < max_err, increasing dt to {}", dt); } } let t = v.t + dt; let v_next = f(t).mtx * vf; // Add this vertex to our mesh: let pos = verts.len(); verts.push(v_next); // There are 3 other vertices of interest: the one we started // from (v) and its two neighbors. We make two edges - one on // each side of the edge (v, v_next). faces.append(&mut vec![ v.mesh_idx, pos, frontier[v.neighbor1].mesh_idx, pos, v.mesh_idx, frontier[v.neighbor2].mesh_idx, ]); // Replace this vertex in the frontier: frontier[i] = FrontierVert { vert: v_next, frame_idx: v.frame_idx, mesh_idx: pos, t: t, neighbor1: v.neighbor1, neighbor2: v.neighbor2, } } // Move this vertex further along, i.e. t + dt. (dt is set by // the furthest we can go while remaining within 'err', i.e. when we // make our connections we look at how far points on the *edges* // diverge from the trajectory of the continuous transformation). // Add this vertex to the mesh, and connect it to: the vertex we // started with, and the two neighbors of that vertex. // Repeat at "Pick a vertex...". // Don't move t + dt past t1. Once a frontier vertex is placed at // that value of t, remove it. // Missing: Anything about when to subdivide an edge. // If I assume a good criterion of "when" to subdivide an edge, the // "how" is straightforward: find the edge's two neighbors in the // frontier. Trace them back to their 'original' vertices at t=t0 // (these should just be stored alongside each frontier member), // produce an interpolated vertex. Produce an interpolated t from // respective t of the two neighbors in the frontier; use that t // to move the 'interpolated' vertex along its trajectory. // // Add new vertex to mesh (and make the necessary connections) // and to frontier. // But still missing from that: When do I collapse a subdivision // back down? return Mesh { verts, faces }; }