use std::rc::Rc; use nalgebra::*; //pub mod examples; use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex, transform}; use crate::rule::{Rule, RuleFn, RuleEval, Child}; use crate::prim; use crate::util; use crate::scratch; fn cube_thing() -> Rule { // Quarter-turn in radians: let qtr = std::f32::consts::FRAC_PI_2; let y = &Vector3::y_axis(); let z = &Vector3::z_axis(); // Each element of this turns to a branch for the recursion: let turns: Vec = vec![ geometry::Transform3::identity().to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(), ]; let gen_xform = |rot: &Mat4| -> Mat4 { (rot * Matrix4::new_scaling(0.5) * geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous()) }; let rec = move |self_: Rc| -> RuleEval { let xforms = turns.iter().map(gen_xform); RuleEval { geom: prim::cube(), final_geom: prim::empty_mesh(), children: xforms.map(move |xf| Child { rule: self_.clone(), xf: xf, vmap: vec![], }).collect(), } }; // I can't really do *mutual* recursion with the above, can I? I'd // need actual functions for that. // "Constants" outside the closure only work the way I think they // should work if: // - they're actually static // - they implement Copy // - the closure can move them Rule { eval: Box::new(rec) } } /* #[derive(Copy, Clone)] struct CurveHorn { seed: [Vertex; 4], id_xform: Mat4, flip180: Mat4, incr: Mat4, } impl CurveHorn { fn test_thing(&self) { let f: Box RuleEval> = Box::new(move || self.do_nothing()); println!("{:p}", f); } fn do_nothing(&self) -> RuleEval { RuleEval { geom: prim::empty_mesh(), final_geom: prim::empty_mesh(), children: vec![ Child { rule: Rule { eval: Box::new(move || self.do_nothing()) }, xf: self.id_xform, vmap: vec![0,1,2,3], }, ], } } fn init() -> Rule { let y = &Vector3::y_axis(); let c = CurveHorn { seed: [ vertex(-0.5, -0.5, 0.0), vertex(-0.5, 0.5, 0.0), vertex( 0.5, 0.5, 0.0), vertex( 0.5, -0.5, 0.0), ], id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(), flip180: nalgebra::geometry::Rotation3::from_axis_angle( &nalgebra::Vector3::y_axis(), std::f32::consts::PI).to_homogeneous(), incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() * Matrix4::new_scaling(0.95) * geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(), }; Rule { eval: Box::new(move || c.do_nothing()) } } } fn start(&self) -> RuleEval { RuleEval { geom: OpenMesh { verts: self.seed.to_vec(), faces: vec![], }, final_geom: prim::empty_mesh(), children: vec![ Child { rule: Rule { eval: Box::new(move || self.recur()) }, xf: self.id_xform, vmap: vec![0,1,2,3], }, Child { rule: Rule { eval: Box::new(move || self.recur()) }, xf: self.flip180, vmap: vec![3,2,1,0], }, ], } } fn recur(&self) -> RuleEval { let verts = self.seed.clone(); let next_verts: Vec = transform(&verts, &self.incr); let geom = OpenMesh { verts: next_verts.clone(), faces: vec![ // The below is just connecting two groups of 4 vertices // each, straight across and then to the next. Tag::Body(1), Tag::Parent(0), Tag::Body(0), Tag::Parent(1), Tag::Parent(0), Tag::Body(1), Tag::Body(2), Tag::Parent(1), Tag::Body(1), Tag::Parent(2), Tag::Parent(1), Tag::Body(2), Tag::Body(3), Tag::Parent(2), Tag::Body(2), Tag::Parent(3), Tag::Parent(2), Tag::Body(3), Tag::Body(0), Tag::Parent(3), Tag::Body(3), Tag::Parent(0), Tag::Parent(3), Tag::Body(0), // TODO: I should really generate these, not hard-code them. ], }; // TODO: This could be made slightly nicer by taking it to a peak // instead of just flattening it in XY, but this is a pretty minor // change. let final_geom = OpenMesh { verts: vec![], faces: vec![ Tag::Parent(0), Tag::Parent(2), Tag::Parent(1), Tag::Parent(0), Tag::Parent(3), Tag::Parent(2), ], }; RuleEval{ geom: geom, final_geom: final_geom, children: vec![ Child { rule: Rule { eval: Box::new(move || self.recur()) }, xf: self.incr, vmap: vec![0,1,2,3], }, ], } } } struct CubeThing { } impl CubeThing { fn init() -> Rule { let c = CubeThing {}; Rule { eval: Box::new(|| c.rec()) } } fn rec(&self) -> RuleEval { let mesh = prim::cube(); // Quarter-turn in radians: let qtr = std::f32::consts::FRAC_PI_2; let y = &Vector3::y_axis(); let z = &Vector3::z_axis(); // Each element of this turns to a branch for the recursion: let turns: Vec = vec![ geometry::Transform3::identity().to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(), ]; let gen_rulestep = |rot: &Mat4| -> Child { let m: Mat4 = rot * Matrix4::new_scaling(0.5) * geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous(); Child { rule: Rule { eval: Box::new(|| self.rec()) }, xf: m, vmap: vec![], } }; RuleEval { geom: mesh, final_geom: prim::empty_mesh(), children: turns.iter().map(gen_rulestep).collect(), } } } struct RamHorn { } impl RamHorn { fn init() -> Rule { let r = RamHorn{}; Rule { eval: Box::new(|| r.start()) } } // Conversion from Python & automata_scratch fn start(&self) -> RuleEval { let opening_xform = |i| { let r = std::f32::consts::FRAC_PI_2 * i; ((geometry::Rotation3::from_axis_angle( &nalgebra::Vector3::z_axis(), r).to_homogeneous()) * geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() * Matrix4::new_scaling(0.5) * geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous()) }; RuleEval { geom: OpenMesh { verts: vec![ // 'Top' vertices: vertex(-0.5, -0.5, 1.0), // 0 (above 9) vertex(-0.5, 0.5, 1.0), // 1 (above 10) vertex( 0.5, 0.5, 1.0), // 2 (above 11) vertex( 0.5, -0.5, 1.0), // 3 (above 12) // Top edge midpoints: vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1) vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2) vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3) vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0) // Top middle: vertex( 0.0, 0.0, 1.0), // 8 // 'Bottom' vertices: vertex(-0.5, -0.5, 0.0), // 9 vertex(-0.5, 0.5, 0.0), // 10 vertex( 0.5, 0.5, 0.0), // 11 vertex( 0.5, -0.5, 0.0), // 12 ], faces: vec![ // bottom face: Tag::Body(9), Tag::Body(10), Tag::Body(11), Tag::Body(9), Tag::Body(11), Tag::Body(12), // two faces straddling edge from vertex 0: Tag::Body(9), Tag::Body(0), Tag::Body(4), Tag::Body(9), Tag::Body(7), Tag::Body(0), // two faces straddling edge from vertex 1: Tag::Body(10), Tag::Body(1), Tag::Body(5), Tag::Body(10), Tag::Body(4), Tag::Body(1), // two faces straddling edge from vertex 2: Tag::Body(11), Tag::Body(2), Tag::Body(6), Tag::Body(11), Tag::Body(5), Tag::Body(2), // two faces straddling edge from vertex 3: Tag::Body(12), Tag::Body(3), Tag::Body(7), Tag::Body(12), Tag::Body(6), Tag::Body(3), // four faces from edge (0,1), (1,2), (2,3), (3,0): Tag::Body(9), Tag::Body(4), Tag::Body(10), Tag::Body(10), Tag::Body(5), Tag::Body(11), Tag::Body(11), Tag::Body(6), Tag::Body(12), Tag::Body(12), Tag::Body(7), Tag::Body(9), ], }, final_geom: prim::empty_mesh(), children: vec![ Child { rule: Rule { eval: Box::new(|| self.ram_horn()) }, xf: opening_xform(0.0), vmap: vec![5,2,6,8], }, Child { rule: Rule { eval: Box::new(|| self.ram_horn()) }, xf: opening_xform(1.0), vmap: vec![4,1,5,8], }, Child { rule: Rule { eval: Box::new(|| self.ram_horn()) }, xf: opening_xform(2.0), vmap: vec![7,0,4,8], }, Child { rule: Rule { eval: Box::new(|| self.ram_horn()) }, xf: opening_xform(3.0), vmap: vec![6,3,7,8], }, // TODO: These vertex mappings appear to be right. // Explain *why* they are right. ], } } fn ram_horn(&self) -> RuleEval { let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0)); let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() * geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() * Matrix4::new_scaling(0.9); let seed = vec![ vertex(-0.5, -0.5, 1.0), vertex(-0.5, 0.5, 1.0), vertex( 0.5, 0.5, 1.0), vertex( 0.5, -0.5, 1.0), ]; let next = transform(&seed, &incr); let geom = OpenMesh { verts: next, faces: vec![ Tag::Body(1), Tag::Parent(0), Tag::Body(0), Tag::Parent(1), Tag::Parent(0), Tag::Body(1), Tag::Body(2), Tag::Parent(1), Tag::Body(1), Tag::Parent(2), Tag::Parent(1), Tag::Body(2), Tag::Body(3), Tag::Parent(2), Tag::Body(2), Tag::Parent(3), Tag::Parent(2), Tag::Body(3), Tag::Body(0), Tag::Parent(3), Tag::Body(3), Tag::Parent(0), Tag::Parent(3), Tag::Body(0), ], }; let final_geom = OpenMesh { verts: vec![], faces: vec![ Tag::Parent(0), Tag::Parent(2), Tag::Parent(1), Tag::Parent(0), Tag::Parent(3), Tag::Parent(2), ], }; RuleEval { geom: geom, final_geom: final_geom, children: vec![ Child { rule: Rule { eval: Box::new(|| self.ram_horn()) }, xf: incr, vmap: vec![0,1,2,3], }, ], } } } */ // Meant to be a copy of twist_from_gen from Python & automata_scratch fn twist(f: f32, subdiv: usize) -> Rule { // TODO: Clean this code up. It was a very naive conversion from // the non-closure version. let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous(); let seed = transform(&vec![ vertex(-0.5, 0.0, -0.5), vertex( 0.5, 0.0, -0.5), vertex( 0.5, 0.0, 0.5), vertex(-0.5, 0.0, 0.5), ], &xf); //let seed_sub = util::subdivide_cycle(&seed, subdiv); let dx0: f32 = 1.5; let dy: f32 = 0.1/f; let ang: f32 = 0.05/f; let count: usize = 4; // Quarter-turn in radians: let qtr = std::f32::consts::FRAC_PI_2; let y = Vector3::y_axis(); let incr_inner = geometry::Translation3::new(-dx0, 0.0, 0.0).to_homogeneous() * geometry::Rotation3::from_axis_angle(&y, ang).to_homogeneous() * geometry::Translation3::new(dx0, dy, 0.0).to_homogeneous(); let incr_outer = geometry::Translation3::new(-dx0*2.0, 0.0, 0.0).to_homogeneous() * geometry::Rotation3::from_axis_angle(&y, ang/2.0).to_homogeneous() * geometry::Translation3::new(dx0*2.0, dy, 0.0).to_homogeneous(); let seed2 = seed.clone(); // TODO: Why do I need the above? let recur = move |incr: Mat4| -> RuleFn { let seed_orig = transform(&seed2, &incr); let seed_sub = util::subdivide_cycle(&seed_orig, subdiv); let n = seed_sub.len(); let geom = OpenMesh { verts: seed_sub.clone(), faces: util::parallel_zigzag_faces(n), }; let (vc, faces) = util::connect_convex(&seed_sub, true); let final_geom = OpenMesh { verts: vec![vc], faces: faces.clone(), }; let c = move |self_: Rc| -> RuleEval { // TODO: Why clone geometry here if I just have to clone it // later on? Seems like Rc may be much easier (if I can't // borrow directly - which is probably the case). RuleEval { geom: geom.clone(), final_geom: final_geom.clone(), children: vec![ Child { rule: self_.clone(), xf: incr, vmap: (0..n).collect(), }, ], } }; Box::new(c) }; // TODO: so there's incr_inner & incr_outer that I wanted to // parametrize over. why is it so ugly to do so? let start = move |self_: Rc| -> RuleEval { let xform = |dx, i, ang0| -> Mat4 { (geometry::Rotation3::from_axis_angle(&y, ang0 + (qtr * (i as f32))).to_homogeneous() * geometry::Translation3::new(dx, 0.0, 0.0).to_homogeneous()) }; let make_child = |i, dx, incr, ang0| -> (Child, OpenMesh) { let seed_orig = transform(&seed, &incr); let seed_sub = util::subdivide_cycle(&seed_orig, subdiv); let n = seed_sub.len(); let c = Child { rule: Rc::new(Rule { eval: (recur.clone())(incr) }), xf: xform(dx, i, ang0), vmap: ((n+1)*i..(n+1)*(i+count)).collect(), // N.B. // note n+1, not n. the +1 is for the centroid below // TODO: The above vmap is wrong when I call // 'make_child' twice and then append. }; let mut vs = transform(&seed_sub, &c.xf); // and in the process, generate faces for these seeds: let (centroid, f) = util::connect_convex(&vs, false); vs.push(centroid); (c, OpenMesh { verts: vs, faces: f }) }; // First generate 'count' children, each one shifted/rotated // differently: let children_inner = (0..count).map(|i| make_child(i, dx0, incr_inner, 0.0)); let children_outer = (0..count).map(|i| make_child(i + count, dx0*2.0, incr_outer, qtr/2.0)); // TODO: the +count is only to work around vmap kludges let (children, meshes): (Vec<_>, Vec<_>) = children_inner.chain(children_outer).unzip(); RuleEval { geom: OpenMesh::append(meshes), final_geom: prim::empty_mesh(), children: children, } }; Rule { eval: Box::new(start) } } pub fn main() { /* { let vs = vec![ vertex(-0.5, 0.0, -0.5), vertex( 0.5, 0.0, -0.5), vertex( 0.5, 0.0, 0.5), vertex(-0.5, 0.0, 0.5), ]; let vs2 = util::subdivide_cycle(&vs, 2); println!("vs={:?}", vs); println!("vs2={:?}", vs2); } fn run_test(r: Rule, iters: u32, name: &str) { println!("Running {}...", name); let (mesh, nodes) = r.to_mesh(iters); println!("Evaluated {} rules", nodes); let fname = format!("{}.stl", name); println!("Writing {}...", fname); mesh.write_stl_file(&fname).unwrap(); } fn run_test_iter(r: Rule, iters: usize, name: &str) { println!("Running {}...", name); let (mesh, nodes) = r.to_mesh_iter(iters); println!("Evaluated {} rules", nodes); let fname = format!("{}.stl", name); println!("Writing {}...", fname); mesh.write_stl_file(&fname).unwrap(); } */ fn run_test_iter(r: &Rc, iters: usize, name: &str) { println!("Running {}...", name); let (mesh, nodes) = Rule::to_mesh_iter(r.clone(), iters); println!("Evaluated {} rules", nodes); let fname = format!("{}.stl", name); println!("Writing {}...", fname); mesh.write_stl_file(&fname).unwrap(); } /* run_test(CubeThing::init(), Rule { eval: CubeThing::rec }, 3, "cube_thing"); // this can't work on its own because the resultant OpenMesh still // has parent references: //run_test(Rule { eval: recur }, 100, "curve_horn_thing"); run_test(CurveHorn::init(), Rule { eval: CurveHorn::start }, 100, "curve_horn2"); run_test(RamHorn::init(), Rule { eval: RamHorn::start }, 200, "ram_horn"); run_test(Twist::init(), Rule { eval: Twist::start }, 200, "twist"); */ //run_test_iter(CubeThing::init(), 3, "cube_thing2"); //run_test_iter(CurveHorn::init(), 100, "curve_horn2_iter"); //run_test_iter(RamHorn::init(), 100, "ram_horn2"); // TODO: If I increase the above from 100 to ~150, Blender reports // that the very tips are non-manifold. I am wondering if this is // some sort of numerical precision issue. //run_test_iter(Twist::init(1.0, 2), 100, "twist"); // This is a stress test: // let f = 20; // run_test_iter(Twist::init(f as f32, 32), 100*f, "twist2"); run_test_iter(&Rc::new(cube_thing()), 3, "cube_thing3"); run_test_iter(&Rc::new(twist(1.0, 2)), 200, "twist"); if false { let a = vec![1,2,3]; let c = move || { println!("c: a={:?}", a); }; let r: Rc = Rc::new(c); // But this will fail at the function calls below: //let r: Rc = Rc::new(c); let r2 = r.clone(); println!("strong_count={}", Rc::strong_count(&r2)); println!("weak_count={}", Rc::weak_count(&r2)); r2(); r(); let a2 = vec![1,2,3]; let c2 = move || { println!("c2: a2={:?}", a2); }; let b: Box = Box::new(c2); b(); } }