Solve (sort of) non-manifold issue in curve_horn stuff

This commit is contained in:
Chris Hodapp 2020-02-17 10:38:21 -05:00
parent f4f6a7db5d
commit e3e7391cea
2 changed files with 40 additions and 61 deletions

View File

@ -2,13 +2,10 @@
## Highest priority: ## Highest priority:
- Fix issue with `curve_horn_*` that prevents geometry being joined in
middle.
- Consider trampolining `to_mesh`. My call stack seems needlessly - Consider trampolining `to_mesh`. My call stack seems needlessly
deep in spots. Can I make tail-recursive? deep in spots. Can I make tail-recursive?
-
## Important: ## Important but less critical:
- Grep for all TODOs in code, really. - Grep for all TODOs in code, really.
- Look at everything in README.md in automata_scratch. - Look at everything in README.md in automata_scratch.
@ -19,6 +16,8 @@
## If I'm bored: ## If I'm bored:
- See `curve_horn_start` comments; can I elegantly solve this issue of
how to connect an exit vertex multiple places?
- Fix links in tri_mesh docs that use relative paths & do a PR? - Fix links in tri_mesh docs that use relative paths & do a PR?
- Look in https://www.nalgebra.org/quick_reference/# for "pour - Look in https://www.nalgebra.org/quick_reference/# for "pour
obtain". Can I fix this somehow? Looks like a French-ism that made obtain". Can I fix this somehow? Looks like a French-ism that made

View File

@ -86,10 +86,6 @@ impl OpenMesh {
fn connect(&self, others: &Vec<OpenMesh>) -> OpenMesh { fn connect(&self, others: &Vec<OpenMesh>) -> OpenMesh {
//println!("DEBUG: connect(), self has {} exit groups, others have {:?}",
// self.exit_groups.len(), others.iter().map(|o| o.exit_groups.len()).collect::<Vec<usize>>());
//println!("DEBUG: connect(), self: verts.len()={} faces.len()={} max face={}", self.verts.len(), self.faces.len(), self.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap());
// Copy body vertices & faces: // Copy body vertices & faces:
let mut verts: Vec<Vertex> = self.verts.clone(); let mut verts: Vec<Vertex> = self.verts.clone();
let mut faces = self.faces.clone(); let mut faces = self.faces.clone();
@ -101,11 +97,6 @@ impl OpenMesh {
let mut offsets: Vec<usize> = vec![0; others.len()]; let mut offsets: Vec<usize> = vec![0; others.len()];
for (i,other) in others.iter().enumerate() { for (i,other) in others.iter().enumerate() {
//let max_ = other.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap_or(&0);
//println!("DEBUG: connect(), other[{}]: verts.len()={} faces.len()={} max face={}", i, other.verts.len(), other.faces.len(), max_);
//println!("DEBUG: start body_offset={}", body_offset);
//println!("DEBUG: start exit_offset={}", exit_offset);
// Append body vertices & exit vertices directly: // Append body vertices & exit vertices directly:
verts.append(&mut other.verts.clone()); verts.append(&mut other.verts.clone());
@ -124,17 +115,11 @@ impl OpenMesh {
offsets[i] = body_offset; offsets[i] = body_offset;
// Increase offsets by the number of elements we appended: // Increase offsets by the number of elements we appended:
body_offset += other.verts.len(); body_offset += other.verts.len();
//println!("DEBUG: end body_offset={}", body_offset);
//println!("DEBUG: end exit_offset={}", exit_offset);
} }
//println!("DEBUG: offsets={:?}", offsets);
// All of the Exit face indices from 'self' need to be // All of the Exit face indices from 'self' need to be
// modified to refer to Body vertices of something in // modified to refer to Body vertices of something in
// 'others': // 'others':
//println!("DEBUG: initial faces={:?}", faces);
for i in 0..faces.len() { for i in 0..faces.len() {
match faces[i] { match faces[i] {
Tag::Exit(g, n) => { Tag::Exit(g, n) => {
@ -143,18 +128,12 @@ impl OpenMesh {
_ => { }, _ => { },
}; };
} }
//println!("DEBUG: final faces={:?}", faces);
let m = OpenMesh { OpenMesh {
verts: verts, verts: verts,
faces: faces, faces: faces,
exit_groups: exit_groups, exit_groups: exit_groups,
}; }
// TODO: Why is this still ending up with Exit faces despite my loop above?
//println!("DEBUG: Returning mesh with verts.len()={} faces.len()={} max face={}", m.verts.len(), m.faces.len(), m.faces.iter().map(|f| match f { Tag::Body(n) => n, Tag::Exit(_,n) => n }).max().unwrap());
//println!("Returning: {:?}", m);
return m;
} }
} }
@ -281,15 +260,34 @@ fn curve_horn_start() -> RuleStep {
&nalgebra::Vector3::y_axis(), &nalgebra::Vector3::y_axis(),
std::f32::consts::PI).to_homogeneous(); std::f32::consts::PI).to_homogeneous();
RuleStep { RuleStep {
geom: empty_mesh(), geom: OpenMesh {
verts: vec![],
faces: vec![
Tag::Exit(1, 0), Tag::Exit(1, 2), Tag::Exit(0, 1),
Tag::Exit(1, 2), Tag::Exit(0, 3), Tag::Exit(0, 1),
Tag::Exit(0, 0), Tag::Exit(0, 2), Tag::Exit(1, 1),
Tag::Exit(0, 2), Tag::Exit(1, 3), Tag::Exit(1, 1),
Tag::Exit(0, 3), Tag::Exit(1, 2), Tag::Exit(0, 2),
Tag::Exit(1, 2), Tag::Exit(1, 3), Tag::Exit(0, 2),
Tag::Exit(1, 0), Tag::Exit(0, 1), Tag::Exit(0, 0),
Tag::Exit(1, 1), Tag::Exit(1, 0), Tag::Exit(0, 0),
// The above is connecting group 0 to group 1,
// straight across + with diagonal - but with group 1
// being flipped 180, so we remap vertices (0,1,2,3)
// to (1,0,3,2) and then flip winding order.
],
exit_groups: vec![4, 4],
},
final_geom: empty_mesh(), final_geom: empty_mesh(),
children: vec![ children: vec![
(Rule::Recurse(curve_horn_thing_rule), id), (Rule::Recurse(curve_horn_thing_rule), id), // exit group 0
(Rule::Recurse(curve_horn_thing_rule), flip180), (Rule::Recurse(curve_horn_thing_rule), flip180), // exit group 1
], ],
} }
// TODO: This has duplicate geometry in the middle because four // TODO: The starting vertices above are duplicated because I
// vertices of each start point never technically connect. // don't have any way for an exit vertex to stand in for multiple
// child vertices that happen to share the same location. I don't
// yet know a good way around this, so I am duplicating vertices.
} }
fn curve_horn_thing_rule() -> RuleStep { fn curve_horn_thing_rule() -> RuleStep {
@ -311,8 +309,10 @@ fn curve_horn_thing_rule() -> RuleStep {
let geom = OpenMesh { let geom = OpenMesh {
verts: verts, verts: verts,
faces: vec![ faces: vec![
// Endcaps purposely left off for now. // The below is just connecting two groups of 4 vertices
// TODO: I should really generate these, not hard-code them. // each, straight across and then to the next. Note that
// since 'verts' doesn't go in a circle, it will look a
// little strange.
Tag::Body(1), Tag::Exit(0, 3), Tag::Exit(0, 1), Tag::Body(1), Tag::Exit(0, 3), Tag::Exit(0, 1),
Tag::Body(1), Tag::Body(3), Tag::Exit(0, 3), Tag::Body(1), Tag::Body(3), Tag::Exit(0, 3),
Tag::Exit(0, 0), Tag::Body(2), Tag::Body(0), Tag::Exit(0, 0), Tag::Body(2), Tag::Body(0),
@ -321,15 +321,19 @@ fn curve_horn_thing_rule() -> RuleStep {
Tag::Body(2), Tag::Exit(0, 2), Tag::Exit(0, 3), Tag::Body(2), Tag::Exit(0, 2), Tag::Exit(0, 3),
Tag::Body(0), Tag::Body(1), Tag::Exit(0, 1), Tag::Body(0), Tag::Body(1), Tag::Exit(0, 1),
Tag::Body(0), Tag::Exit(0, 1), Tag::Exit(0, 0), Tag::Body(0), Tag::Exit(0, 1), Tag::Exit(0, 0),
// TODO: I should really generate these, not hard-code them.
], ],
exit_groups: vec![4], exit_groups: vec![4],
}; };
// TODO: This could be made slightly nicer by taking it to a peak
// instead of just flattening it in XY, but this is a pretty minor
// change.
let final_geom = OpenMesh { let final_geom = OpenMesh {
verts: final_verts, verts: final_verts,
faces: vec![ faces: vec![
Tag::Body(0), Tag::Body(3), Tag::Body(1), Tag::Body(0), Tag::Body(1), Tag::Body(3),
Tag::Body(0), Tag::Body(2), Tag::Body(3), Tag::Body(0), Tag::Body(3), Tag::Body(2),
], ],
exit_groups: vec![], exit_groups: vec![],
}; };
@ -338,33 +342,9 @@ fn curve_horn_thing_rule() -> RuleStep {
geom: geom, geom: geom,
final_geom: final_geom, final_geom: final_geom,
children: vec![ children: vec![
(Rule::Recurse(curve_horn_thing_rule), m), (Rule::Recurse(curve_horn_thing_rule), m), // exit group 0
], ],
} }
/*
// We need 3 indices per face, 2 faces per (boundary) vertex:
let num_verts = seed.no_vertices();
let mut idxs: Vec<u32> = vec![0; 2 * num_verts * 3];
for i in 0..num_verts {
let a1: u32 = i as _;
let a2: u32 = ((i + 1) % num_verts) as _;
let b1: u32 = (i + num_verts) as _;
let b2: u32 = (((i + 1) % num_verts) + num_verts) as _;
// Connect vertices into faces with a zig-zag pattern
// (mind the winding order). First face:
idxs[6*i + 0] = a1;
idxs[6*i + 1] = a2;
idxs[6*i + 2] = b1;
//println!("connect vert {}, face 1: ({}, {}, {}) = {}, {}, {}", i, a1, a2, b1, vert2str(a1), vert2str(a2), vert2str(b1));
// Second face:
idxs[6*i + 3] = b1;
idxs[6*i + 4] = a2;
idxs[6*i + 5] = b2;
//println!("connect vert {}, face 2: ({}, {}, {}) = {}, {}, {}", i, b1, a2, b2, vert2str(b1), vert2str(a2), vert2str(b2));
}
*/
} }
fn cube_thing_rule() -> RuleStep { fn cube_thing_rule() -> RuleStep {