Replaced 3-tuple with rule::Child; wrote some docs
This commit is contained in:
parent
c594538644
commit
e37d49f7e0
@ -4,11 +4,13 @@
|
|||||||
|
|
||||||
- Clean up my 'parent vertex mapping' thingy, *and* come up with
|
- Clean up my 'parent vertex mapping' thingy, *and* come up with
|
||||||
meaningful terms to discuss it.
|
meaningful terms to discuss it.
|
||||||
|
- Terminology: "run" a rule versus "evaluate" a rule.
|
||||||
- Do transforms compose in the *reverse* of automata_scratch? This
|
- Do transforms compose in the *reverse* of automata_scratch? This
|
||||||
appears to be the case.
|
appears to be the case.
|
||||||
|
|
||||||
## Important but less critical:
|
## Important but less critical:
|
||||||
|
|
||||||
|
- Why must I repeat myself so much in these definitions?
|
||||||
- Consider trampolining `to_mesh`. My call stack seems needlessly
|
- Consider trampolining `to_mesh`. My call stack seems needlessly
|
||||||
deep in spots. Can I make tail-recursive?
|
deep in spots. Can I make tail-recursive?
|
||||||
- Grep for all TODOs in code, really.
|
- Grep for all TODOs in code, really.
|
||||||
|
|||||||
@ -2,7 +2,7 @@ use nalgebra::*;
|
|||||||
//pub mod examples;
|
//pub mod examples;
|
||||||
|
|
||||||
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex};
|
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex};
|
||||||
use crate::rule::{Rule, RuleStep};
|
use crate::rule::{Rule, RuleStep, Child};
|
||||||
use crate::prim;
|
use crate::prim;
|
||||||
|
|
||||||
fn curve_horn_start() -> RuleStep {
|
fn curve_horn_start() -> RuleStep {
|
||||||
@ -22,11 +22,18 @@ fn curve_horn_start() -> RuleStep {
|
|||||||
},
|
},
|
||||||
final_geom: prim::empty_mesh(),
|
final_geom: prim::empty_mesh(),
|
||||||
children: vec![
|
children: vec![
|
||||||
(Rule::Recurse(curve_horn_thing_rule), id, vec![0,1,2,3]),
|
Child {
|
||||||
(Rule::Recurse(curve_horn_thing_rule), flip180, vec![3,2,1,0]),
|
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||||
|
xf: id,
|
||||||
|
vmap: vec![0,1,2,3],
|
||||||
|
},
|
||||||
|
Child {
|
||||||
|
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||||
|
xf: flip180,
|
||||||
|
vmap: vec![3,2,1,0],
|
||||||
|
},
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
// TODO: Fix the consequences of the 180 flip
|
|
||||||
}
|
}
|
||||||
|
|
||||||
fn curve_horn_thing_rule() -> RuleStep {
|
fn curve_horn_thing_rule() -> RuleStep {
|
||||||
@ -77,7 +84,11 @@ fn curve_horn_thing_rule() -> RuleStep {
|
|||||||
geom: geom,
|
geom: geom,
|
||||||
final_geom: final_geom,
|
final_geom: final_geom,
|
||||||
children: vec![
|
children: vec![
|
||||||
(Rule::Recurse(curve_horn_thing_rule), m, vec![0,1,2,3]),
|
Child {
|
||||||
|
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||||
|
xf: m,
|
||||||
|
vmap: vec![0,1,2,3],
|
||||||
|
},
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -102,11 +113,15 @@ fn cube_thing_rule() -> RuleStep {
|
|||||||
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||||
];
|
];
|
||||||
|
|
||||||
let gen_rulestep = |rot: &Mat4| -> (Rule, Mat4, Vec<usize>) {
|
let gen_rulestep = |rot: &Mat4| -> Child {
|
||||||
let m: Mat4 = rot *
|
let m: Mat4 = rot *
|
||||||
Matrix4::new_scaling(0.5) *
|
Matrix4::new_scaling(0.5) *
|
||||||
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||||
(Rule::Recurse(cube_thing_rule), m, vec![])
|
Child {
|
||||||
|
rule: Rule::Recurse(cube_thing_rule),
|
||||||
|
xf: m,
|
||||||
|
vmap: vec![],
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
RuleStep {
|
RuleStep {
|
||||||
@ -119,8 +134,9 @@ fn cube_thing_rule() -> RuleStep {
|
|||||||
// Conversion from Python & automata_scratch
|
// Conversion from Python & automata_scratch
|
||||||
fn ram_horn_start() -> RuleStep {
|
fn ram_horn_start() -> RuleStep {
|
||||||
let opening_xform = |i| {
|
let opening_xform = |i| {
|
||||||
|
let r = std::f32::consts::FRAC_PI_2 * i;
|
||||||
((geometry::Rotation3::from_axis_angle(
|
((geometry::Rotation3::from_axis_angle(
|
||||||
&nalgebra::Vector3::z_axis(), i).to_homogeneous()) *
|
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
|
||||||
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
||||||
Matrix4::new_scaling(0.5) *
|
Matrix4::new_scaling(0.5) *
|
||||||
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
||||||
@ -171,12 +187,28 @@ fn ram_horn_start() -> RuleStep {
|
|||||||
},
|
},
|
||||||
final_geom: prim::empty_mesh(),
|
final_geom: prim::empty_mesh(),
|
||||||
children: vec![
|
children: vec![
|
||||||
(Rule::Recurse(ram_horn), opening_xform(0.0), vec![5,2,6,8]),
|
Child {
|
||||||
(Rule::Recurse(ram_horn), opening_xform(std::f32::consts::FRAC_PI_2), vec![4,1,5,8]),
|
rule: Rule::Recurse(ram_horn),
|
||||||
(Rule::Recurse(ram_horn), opening_xform(std::f32::consts::FRAC_PI_2*2.0), vec![7,0,4,8]),
|
xf: opening_xform(0.0),
|
||||||
(Rule::Recurse(ram_horn), opening_xform(std::f32::consts::FRAC_PI_2*3.0), vec![6,3,7,8]),
|
vmap: vec![5,2,6,8],
|
||||||
|
},
|
||||||
|
Child {
|
||||||
|
rule: Rule::Recurse(ram_horn),
|
||||||
|
xf: opening_xform(1.0),
|
||||||
|
vmap: vec![4,1,5,8],
|
||||||
|
},
|
||||||
|
Child {
|
||||||
|
rule: Rule::Recurse(ram_horn),
|
||||||
|
xf: opening_xform(2.0),
|
||||||
|
vmap: vec![7,0,4,8],
|
||||||
|
},
|
||||||
|
Child {
|
||||||
|
rule: Rule::Recurse(ram_horn),
|
||||||
|
xf: opening_xform(3.0),
|
||||||
|
vmap: vec![6,3,7,8],
|
||||||
|
},
|
||||||
// TODO: These vertex mappings appear to be right.
|
// TODO: These vertex mappings appear to be right.
|
||||||
// Understand *why* they are right.
|
// Explain *why* they are right.
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -219,7 +251,11 @@ fn ram_horn() -> RuleStep {
|
|||||||
geom: geom,
|
geom: geom,
|
||||||
final_geom: final_geom,
|
final_geom: final_geom,
|
||||||
children: vec![
|
children: vec![
|
||||||
(Rule::Recurse(ram_horn), incr, vec![0,1,2,3]),
|
Child {
|
||||||
|
rule: Rule::Recurse(ram_horn),
|
||||||
|
xf: incr,
|
||||||
|
vmap: vec![0,1,2,3],
|
||||||
|
},
|
||||||
],
|
],
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
95
src/rule.rs
95
src/rule.rs
@ -1,34 +1,69 @@
|
|||||||
use crate::openmesh::{OpenMesh, Mat4};
|
use crate::openmesh::{OpenMesh, Mat4};
|
||||||
use crate::prim;
|
use crate::prim;
|
||||||
|
|
||||||
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
/// Definition of a rule. In general, a `Rule`:
|
||||||
|
///
|
||||||
|
/// - produces geometry when it is evaluated
|
||||||
|
/// - tells what other rules to invoke, and what to do with their
|
||||||
|
/// geometry
|
||||||
pub enum Rule {
|
pub enum Rule {
|
||||||
// Produce geometry, and possibly recurse further:
|
/// Produce some geometry, and possibly recurse further.
|
||||||
Recurse(fn () -> RuleStep),
|
Recurse(fn () -> RuleStep),
|
||||||
// Stop recursing here:
|
/// Produce nothing and recurse no further.
|
||||||
EmptyRule,
|
EmptyRule,
|
||||||
}
|
}
|
||||||
// TODO: Rename rules?
|
// TODO: Rename rules?
|
||||||
// TODO: It may be possible to have just a 'static' rule that requires
|
// TODO: It may be possible to have just a 'static' rule that requires
|
||||||
// no function call.
|
// no function call.
|
||||||
|
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
||||||
|
|
||||||
|
/// `RuleStep` supplies the results of evaluating some `Rule` for one
|
||||||
|
/// iteration: it contains the geometry produced at this step
|
||||||
|
/// (`geom`), and it tells what to do next depending on whether
|
||||||
|
/// recursion continues further, or is stopped here (due to hitting
|
||||||
|
/// some limit of iterations or some lower limit on overall scale).
|
||||||
|
///
|
||||||
|
/// That is:
|
||||||
|
/// - if recursion stops, `final_geom` is connected with `geom`.
|
||||||
|
/// - if recursion continues, the rules of `children` are evaluated,
|
||||||
|
/// and the resultant geometry is transformed and then connected with
|
||||||
|
/// `geom`.
|
||||||
pub struct RuleStep {
|
pub struct RuleStep {
|
||||||
// The geometry generated by this rule on its own (not by any of
|
/// The geometry generated at just this iteration
|
||||||
// the child rules).
|
|
||||||
pub geom: OpenMesh,
|
pub geom: OpenMesh,
|
||||||
|
|
||||||
// The "final" geometry, used only if recursion must be stopped.
|
/// The "final" geometry that is merged with `geom` via
|
||||||
// This should be in the same coordinate space as 'geom', and
|
/// `connect()` in the event that recursion stops. This must be
|
||||||
// properly close any exit groups that it may have (and have no
|
/// in the same coordinate space as `geom`.
|
||||||
// exit groups of its own).
|
///
|
||||||
|
/// Parent vertex references will be resolved directly to `geom`
|
||||||
|
/// with no mapping.
|
||||||
pub final_geom: OpenMesh,
|
pub final_geom: OpenMesh,
|
||||||
|
|
||||||
// Child rules, paired with the transform that will be applied to
|
/// The child invocations (used if recursion continues). The
|
||||||
// all of their geometry and parent vertex mappings
|
/// 'parent' mesh, from the perspective of all geometry produced
|
||||||
pub children: Vec<(Rule, Mat4, Vec<usize>)>,
|
/// by `children`, is `geom`.
|
||||||
// TODO: Clean this up, perhaps change the tuple to something
|
pub children: Vec<Child>,
|
||||||
// saner.
|
}
|
||||||
// TODO: Also, document & rename this more clearly.
|
|
||||||
|
/// `Child` evaluations, pairing another `Rule` with the
|
||||||
|
/// transformations and parent vertex mappings that should be applied
|
||||||
|
/// to it.
|
||||||
|
pub struct Child {
|
||||||
|
|
||||||
|
/// Rule to evaluate to produce geometry
|
||||||
|
pub rule: Rule,
|
||||||
|
|
||||||
|
/// The transform to apply to all geometry produced by `rule`
|
||||||
|
/// (including its own `geom` and `final_geom` if needed, as well
|
||||||
|
/// as all sub-geometry produced recursively).
|
||||||
|
pub xf: Mat4,
|
||||||
|
|
||||||
|
/// The mapping to apply to turn a Tag::Parent vertex reference
|
||||||
|
/// into a vertex index of the parent mesh. That is, if `rule`
|
||||||
|
/// produces an `OpenMesh` with a face of `Tag::Parent(n)`, this
|
||||||
|
/// will correspond to index `vmap[n]` in the parent mesh.
|
||||||
|
pub vmap: Vec<usize>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Rule {
|
impl Rule {
|
||||||
@ -37,13 +72,16 @@ impl Rule {
|
|||||||
// could end up having a lot of identical geometry that need not be
|
// could end up having a lot of identical geometry that need not be
|
||||||
// duplicated until it is transformed into the global space.
|
// duplicated until it is transformed into the global space.
|
||||||
//
|
//
|
||||||
// This might produce bigger gains if I rewrite rule_to_mesh so that
|
// This might produce bigger gains if I rewrite to_mesh so that
|
||||||
// rather than repeatedly transforming meshes, it stacks
|
// rather than repeatedly transforming meshes, it stacks
|
||||||
// transformations and then applies them all at once.
|
// transformations and then applies them all at once.
|
||||||
|
|
||||||
|
/// Convert this `Rule` to mesh data, recursively. `iters_left`
|
||||||
|
/// sets the maximum recursion depth. This returns (geometry,
|
||||||
|
/// number of rule evaluations).
|
||||||
pub fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
pub fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
||||||
|
|
||||||
let mut nodes: u32 = 1;
|
let mut evals: u32 = 1;
|
||||||
|
|
||||||
if iters_left <= 0 {
|
if iters_left <= 0 {
|
||||||
match self {
|
match self {
|
||||||
@ -52,7 +90,7 @@ impl Rule {
|
|||||||
return (rs.final_geom, 1);
|
return (rs.final_geom, 1);
|
||||||
}
|
}
|
||||||
Rule::EmptyRule => {
|
Rule::EmptyRule => {
|
||||||
return (prim::empty_mesh(), nodes);
|
return (prim::empty_mesh(), evals);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -63,23 +101,22 @@ impl Rule {
|
|||||||
// TODO: This logic is more or less right, but it
|
// TODO: This logic is more or less right, but it
|
||||||
// could perhaps use some un-tupling or something.
|
// could perhaps use some un-tupling or something.
|
||||||
|
|
||||||
let subgeom: Vec<(OpenMesh, &Vec<usize>)> = rs.children.iter().map(
|
let subgeom: Vec<(OpenMesh, &Vec<usize>)> = rs.children.iter().map(|sub| {
|
||||||
|(subrule, subxform, vmap)| {
|
// Get sub-geometry (still un-transformed):
|
||||||
// Get sub-geometry (still un-transformed):
|
let (submesh, eval) = sub.rule.to_mesh(iters_left - 1);
|
||||||
let (submesh,n) = subrule.to_mesh(iters_left - 1);
|
// Tally up eval count:
|
||||||
// Tally up node count:
|
evals += n;
|
||||||
nodes += n;
|
|
||||||
|
|
||||||
let m2 = submesh.transform(*subxform);
|
let m2 = submesh.transform(sub.xf);
|
||||||
|
|
||||||
(m2, vmap)
|
(m2, &sub.vmap)
|
||||||
}).collect();
|
}).collect();
|
||||||
|
|
||||||
// Connect geometry from this rule (not child rules):
|
// Connect geometry from this rule (not child rules):
|
||||||
return (rs.geom.connect(&subgeom), nodes);
|
return (rs.geom.connect(&subgeom), evals);
|
||||||
}
|
}
|
||||||
Rule::EmptyRule => {
|
Rule::EmptyRule => {
|
||||||
return (prim::empty_mesh(), nodes);
|
return (prim::empty_mesh(), evals);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user