Attempt to organize into modules, though still pretty rough
This commit is contained in:
parent
e3e7391cea
commit
cae2d3df10
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
## Highest priority:
|
## Highest priority:
|
||||||
|
|
||||||
|
- Try a more complex case with multiple exit groups
|
||||||
- Consider trampolining `to_mesh`. My call stack seems needlessly
|
- Consider trampolining `to_mesh`. My call stack seems needlessly
|
||||||
deep in spots. Can I make tail-recursive?
|
deep in spots. Can I make tail-recursive?
|
||||||
|
|
||||||
|
|||||||
149
src/examples.rs
Normal file
149
src/examples.rs
Normal file
@ -0,0 +1,149 @@
|
|||||||
|
use nalgebra::*;
|
||||||
|
//pub mod examples;
|
||||||
|
|
||||||
|
use crate::openmesh::{OpenMesh, Tag, Mat4, Vertex, vertex};
|
||||||
|
use crate::rule::{Rule, RuleStep};
|
||||||
|
use crate::prim;
|
||||||
|
|
||||||
|
fn curve_horn_start() -> RuleStep {
|
||||||
|
let id = nalgebra::geometry::Transform3::identity().to_homogeneous();
|
||||||
|
let flip180 = nalgebra::geometry::Rotation3::from_axis_angle(
|
||||||
|
&nalgebra::Vector3::y_axis(),
|
||||||
|
std::f32::consts::PI).to_homogeneous();
|
||||||
|
RuleStep {
|
||||||
|
geom: OpenMesh {
|
||||||
|
verts: vec![],
|
||||||
|
faces: vec![
|
||||||
|
Tag::Exit(1, 0), Tag::Exit(1, 2), Tag::Exit(0, 1),
|
||||||
|
Tag::Exit(1, 2), Tag::Exit(0, 3), Tag::Exit(0, 1),
|
||||||
|
Tag::Exit(0, 0), Tag::Exit(0, 2), Tag::Exit(1, 1),
|
||||||
|
Tag::Exit(0, 2), Tag::Exit(1, 3), Tag::Exit(1, 1),
|
||||||
|
Tag::Exit(0, 3), Tag::Exit(1, 2), Tag::Exit(0, 2),
|
||||||
|
Tag::Exit(1, 2), Tag::Exit(1, 3), Tag::Exit(0, 2),
|
||||||
|
Tag::Exit(1, 0), Tag::Exit(0, 1), Tag::Exit(0, 0),
|
||||||
|
Tag::Exit(1, 1), Tag::Exit(1, 0), Tag::Exit(0, 0),
|
||||||
|
// The above is connecting group 0 to group 1,
|
||||||
|
// straight across + with diagonal - but with group 1
|
||||||
|
// being flipped 180, so we remap vertices (0,1,2,3)
|
||||||
|
// to (1,0,3,2) and then flip winding order.
|
||||||
|
],
|
||||||
|
exit_groups: vec![4, 4],
|
||||||
|
},
|
||||||
|
final_geom: prim::empty_mesh(),
|
||||||
|
children: vec![
|
||||||
|
(Rule::Recurse(curve_horn_thing_rule), id), // exit group 0
|
||||||
|
(Rule::Recurse(curve_horn_thing_rule), flip180), // exit group 1
|
||||||
|
],
|
||||||
|
}
|
||||||
|
// TODO: The starting vertices above are duplicated because I
|
||||||
|
// don't have any way for an exit vertex to stand in for multiple
|
||||||
|
// child vertices that happen to share the same location. I don't
|
||||||
|
// yet know a good way around this, so I am duplicating vertices.
|
||||||
|
}
|
||||||
|
|
||||||
|
fn curve_horn_thing_rule() -> RuleStep {
|
||||||
|
|
||||||
|
let y = &Vector3::y_axis();
|
||||||
|
|
||||||
|
let m: Mat4 = geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
||||||
|
Matrix4::new_scaling(0.95) *
|
||||||
|
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous();
|
||||||
|
|
||||||
|
let verts = vec![
|
||||||
|
vertex(-0.5, -0.5, 0.0),
|
||||||
|
vertex(0.5, -0.5, 0.0),
|
||||||
|
vertex(-0.5, 0.5, 0.0),
|
||||||
|
vertex(0.5, 0.5, 0.0),
|
||||||
|
];
|
||||||
|
let final_verts: Vec<Vertex> = verts.iter().map(|v| m * v).collect();
|
||||||
|
|
||||||
|
let geom = OpenMesh {
|
||||||
|
verts: verts,
|
||||||
|
faces: vec![
|
||||||
|
// The below is just connecting two groups of 4 vertices
|
||||||
|
// each, straight across and then to the next. Note that
|
||||||
|
// since 'verts' doesn't go in a circle, it will look a
|
||||||
|
// little strange.
|
||||||
|
Tag::Body(1), Tag::Exit(0, 3), Tag::Exit(0, 1),
|
||||||
|
Tag::Body(1), Tag::Body(3), Tag::Exit(0, 3),
|
||||||
|
Tag::Exit(0, 0), Tag::Body(2), Tag::Body(0),
|
||||||
|
Tag::Exit(0, 0), Tag::Exit(0, 2), Tag::Body(2),
|
||||||
|
Tag::Body(2), Tag::Exit(0, 3), Tag::Body(3),
|
||||||
|
Tag::Body(2), Tag::Exit(0, 2), Tag::Exit(0, 3),
|
||||||
|
Tag::Body(0), Tag::Body(1), Tag::Exit(0, 1),
|
||||||
|
Tag::Body(0), Tag::Exit(0, 1), Tag::Exit(0, 0),
|
||||||
|
// TODO: I should really generate these, not hard-code them.
|
||||||
|
],
|
||||||
|
exit_groups: vec![4],
|
||||||
|
};
|
||||||
|
|
||||||
|
// TODO: This could be made slightly nicer by taking it to a peak
|
||||||
|
// instead of just flattening it in XY, but this is a pretty minor
|
||||||
|
// change.
|
||||||
|
let final_geom = OpenMesh {
|
||||||
|
verts: final_verts,
|
||||||
|
faces: vec![
|
||||||
|
Tag::Body(0), Tag::Body(1), Tag::Body(3),
|
||||||
|
Tag::Body(0), Tag::Body(3), Tag::Body(2),
|
||||||
|
],
|
||||||
|
exit_groups: vec![],
|
||||||
|
};
|
||||||
|
|
||||||
|
RuleStep{
|
||||||
|
geom: geom,
|
||||||
|
final_geom: final_geom,
|
||||||
|
children: vec![
|
||||||
|
(Rule::Recurse(curve_horn_thing_rule), m), // exit group 0
|
||||||
|
],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cube_thing_rule() -> RuleStep {
|
||||||
|
|
||||||
|
let mesh = prim::cube();
|
||||||
|
|
||||||
|
// Quarter-turn in radians:
|
||||||
|
let qtr = std::f32::consts::FRAC_PI_2;
|
||||||
|
|
||||||
|
let y = &Vector3::y_axis();
|
||||||
|
let z = &Vector3::z_axis();
|
||||||
|
|
||||||
|
// Each element of this turns to a branch for the recursion:
|
||||||
|
let turns: Vec<Mat4> = vec![
|
||||||
|
geometry::Transform3::identity().to_homogeneous(),
|
||||||
|
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
||||||
|
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
||||||
|
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
||||||
|
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
||||||
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||||
|
];
|
||||||
|
|
||||||
|
let gen_rulestep = |rot: &Mat4| -> (Rule, Mat4) {
|
||||||
|
let m: Mat4 = rot *
|
||||||
|
Matrix4::new_scaling(0.5) *
|
||||||
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||||
|
(Rule::Recurse(cube_thing_rule), m)
|
||||||
|
};
|
||||||
|
|
||||||
|
RuleStep {
|
||||||
|
geom: mesh,
|
||||||
|
final_geom: prim::empty_mesh(), // no exit groups
|
||||||
|
children: turns.iter().map(gen_rulestep).collect(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn main() {
|
||||||
|
|
||||||
|
let run_test = |r: Rule, iters, name| {
|
||||||
|
println!("Running {}...", name);
|
||||||
|
let (mesh, nodes) = r.to_mesh(iters);
|
||||||
|
println!("Merged {} nodes", nodes);
|
||||||
|
let fname = format!("{}.stl", name);
|
||||||
|
println!("Writing {}...", fname);
|
||||||
|
mesh.write_stl_file(&fname).unwrap();
|
||||||
|
};
|
||||||
|
|
||||||
|
run_test(Rule::Recurse(cube_thing_rule), 3, "cube_thing");
|
||||||
|
run_test(Rule::Recurse(curve_horn_thing_rule), 100, "curve_horn_thing");
|
||||||
|
run_test(Rule::Recurse(curve_horn_start), 100, "curve_horn2");
|
||||||
|
}
|
||||||
8
src/lib.rs
Normal file
8
src/lib.rs
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
pub mod examples;
|
||||||
|
pub mod openmesh;
|
||||||
|
pub mod rule;
|
||||||
|
pub mod prim;
|
||||||
|
|
||||||
|
//pub use crate::examples;
|
||||||
|
//pub use crate::openmesh::test_thing;
|
||||||
|
|
||||||
397
src/main.rs
397
src/main.rs
@ -1,398 +1,3 @@
|
|||||||
use nalgebra::*;
|
|
||||||
use std::fs::OpenOptions;
|
|
||||||
use std::io;
|
|
||||||
|
|
||||||
/// A type for custom mesh vertices. Initialize with [vertex][self::vertex].
|
|
||||||
pub type Vertex = Vector4<f32>;
|
|
||||||
pub type Mat4 = Matrix4<f32>;
|
|
||||||
|
|
||||||
/// Initializes a vertex:
|
|
||||||
pub fn vertex(x: f32, y: f32, z: f32) -> Vertex {
|
|
||||||
Vertex::new(x, y, z, 1.0)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
enum Tag {
|
|
||||||
Body(usize),
|
|
||||||
Exit(usize, usize), // (group, vertex)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone, Debug)]
|
|
||||||
struct OpenMesh {
|
|
||||||
// Vertices (in homogeneous coordinates).
|
|
||||||
verts: Vec<Vertex>,
|
|
||||||
// Triangles, taken as every 3 values, treated each as indices
|
|
||||||
// into 'verts':
|
|
||||||
faces: Vec<Tag>,
|
|
||||||
exit_groups: Vec<usize>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl OpenMesh {
|
|
||||||
|
|
||||||
fn transform(&self, xfm: Mat4) -> OpenMesh {
|
|
||||||
OpenMesh {
|
|
||||||
verts: self.verts.iter().map(|v| xfm * v).collect(),
|
|
||||||
// TODO: Is the above faster if I pack vectors into a
|
|
||||||
// bigger matrix, and transform that?
|
|
||||||
faces: self.faces.clone(), // TODO: Use Rc?
|
|
||||||
exit_groups: self.exit_groups.clone(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn write_stl_file(&self, fname: &str) -> io::Result<()> {
|
|
||||||
let mut file = OpenOptions::new().write(true).create(true).truncate(true).open(fname)?;
|
|
||||||
self.write_stl(&mut file)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn write_stl<W: std::io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
|
||||||
|
|
||||||
// Every group of 3 indices in self.faces is one triangle, so
|
|
||||||
// pre-allocate in the format stl_io wants:
|
|
||||||
let num_faces = self.faces.len() / 3;
|
|
||||||
let mut triangles = vec![stl_io::Triangle {
|
|
||||||
normal: [0.0; 3],
|
|
||||||
vertices: [[0.0; 3]; 3],
|
|
||||||
}; num_faces];
|
|
||||||
|
|
||||||
let get_vert = |j| {
|
|
||||||
match self.faces[j] {
|
|
||||||
Tag::Body(n) => self.verts[n].xyz(),
|
|
||||||
Tag::Exit(_, _) => panic!("Cannot write_stl() if mesh has exit groups!"),
|
|
||||||
}
|
|
||||||
};
|
|
||||||
// TODO: Handle this behavior
|
|
||||||
|
|
||||||
// Turn every face into an stl_io::Triangle:
|
|
||||||
for i in 0..num_faces {
|
|
||||||
let v0 = get_vert(3*i + 0);
|
|
||||||
let v1 = get_vert(3*i + 1);
|
|
||||||
let v2 = get_vert(3*i + 2);
|
|
||||||
|
|
||||||
let normal = (v1-v0).cross(&(v2-v0));
|
|
||||||
|
|
||||||
triangles[i].normal.copy_from_slice(&normal.as_slice());
|
|
||||||
triangles[i].vertices[0].copy_from_slice(v0.as_slice());
|
|
||||||
triangles[i].vertices[1].copy_from_slice(v1.as_slice());
|
|
||||||
triangles[i].vertices[2].copy_from_slice(v2.as_slice());
|
|
||||||
// TODO: Is there a cleaner way to do the above?
|
|
||||||
}
|
|
||||||
|
|
||||||
// I could also solve this with something like
|
|
||||||
// https://doc.rust-lang.org/std/primitive.slice.html#method.chunks_exact
|
|
||||||
// however I don't know what performance difference may be.
|
|
||||||
|
|
||||||
stl_io::write_stl(writer, triangles.iter())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn connect(&self, others: &Vec<OpenMesh>) -> OpenMesh {
|
|
||||||
|
|
||||||
// Copy body vertices & faces:
|
|
||||||
let mut verts: Vec<Vertex> = self.verts.clone();
|
|
||||||
let mut faces = self.faces.clone();
|
|
||||||
|
|
||||||
let mut exit_groups: Vec<usize> = vec![];
|
|
||||||
|
|
||||||
let mut body_offset = self.verts.len();
|
|
||||||
let mut exit_offset = 0;
|
|
||||||
let mut offsets: Vec<usize> = vec![0; others.len()];
|
|
||||||
for (i,other) in others.iter().enumerate() {
|
|
||||||
|
|
||||||
// Append body vertices & exit vertices directly:
|
|
||||||
verts.append(&mut other.verts.clone());
|
|
||||||
|
|
||||||
// Append faces, shifting each kind by respective offset:
|
|
||||||
faces.extend(other.faces.iter().map(|t| {
|
|
||||||
match t {
|
|
||||||
Tag::Body(n) => Tag::Body(n + body_offset),
|
|
||||||
Tag::Exit(g, n) => Tag::Exit(g + exit_groups.len(), n + exit_offset),
|
|
||||||
}
|
|
||||||
}));
|
|
||||||
if i < self.exit_groups.len() {
|
|
||||||
exit_offset += self.exit_groups[i];
|
|
||||||
}
|
|
||||||
exit_groups.append(&mut other.exit_groups.clone());
|
|
||||||
|
|
||||||
offsets[i] = body_offset;
|
|
||||||
// Increase offsets by the number of elements we appended:
|
|
||||||
body_offset += other.verts.len();
|
|
||||||
}
|
|
||||||
|
|
||||||
// All of the Exit face indices from 'self' need to be
|
|
||||||
// modified to refer to Body vertices of something in
|
|
||||||
// 'others':
|
|
||||||
for i in 0..faces.len() {
|
|
||||||
match faces[i] {
|
|
||||||
Tag::Exit(g, n) => {
|
|
||||||
faces[i] = Tag::Body(n + offsets[g]);
|
|
||||||
},
|
|
||||||
_ => { },
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
OpenMesh {
|
|
||||||
verts: verts,
|
|
||||||
faces: faces,
|
|
||||||
exit_groups: exit_groups,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
|
||||||
enum Rule {
|
|
||||||
// Produce geometry, and possibly recurse further:
|
|
||||||
Recurse(fn () -> RuleStep),
|
|
||||||
// Stop recursing here:
|
|
||||||
EmptyRule,
|
|
||||||
}
|
|
||||||
// TODO: Rename rules?
|
|
||||||
// TODO: It may be possible to have just a 'static' rule that requires
|
|
||||||
// no function call.
|
|
||||||
|
|
||||||
struct RuleStep {
|
|
||||||
// The geometry generated by this rule on its own (not by any of
|
|
||||||
// the child rules).
|
|
||||||
geom: OpenMesh,
|
|
||||||
|
|
||||||
// The "final" geometry, used only if recursion must be stopped.
|
|
||||||
// This should be in the same coordinate space as 'geom', and
|
|
||||||
// properly close any exit groups that it may have (and have no
|
|
||||||
// exit groups of its own).
|
|
||||||
final_geom: OpenMesh,
|
|
||||||
|
|
||||||
// Child rules, paired with the transform that will be applied to
|
|
||||||
// all of their geometry
|
|
||||||
children: Vec<(Rule, Mat4)>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Rule {
|
|
||||||
|
|
||||||
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
|
|
||||||
// could end up having a lot of identical geometry that need not be
|
|
||||||
// duplicated until it is transformed into the global space.
|
|
||||||
//
|
|
||||||
// This might produce bigger gains if I rewrite rule_to_mesh so that
|
|
||||||
// rather than repeatedly transforming meshes, it stacks
|
|
||||||
// transformations and then applies them all at once.
|
|
||||||
|
|
||||||
fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
|
||||||
|
|
||||||
let mut nodes: u32 = 1;
|
|
||||||
|
|
||||||
if iters_left <= 0 {
|
|
||||||
match self {
|
|
||||||
Rule::Recurse(f) => {
|
|
||||||
let rs: RuleStep = f();
|
|
||||||
return (rs.final_geom, 1);
|
|
||||||
}
|
|
||||||
Rule::EmptyRule => {
|
|
||||||
return (empty_mesh(), nodes);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
match self {
|
|
||||||
Rule::Recurse(f) => {
|
|
||||||
let rs: RuleStep = f();
|
|
||||||
|
|
||||||
// Get sub-geometry (from child rules) and transform it:
|
|
||||||
let subgeom: Vec<(OpenMesh, Mat4, u32)> = rs.children.iter().map(|(subrule, subxform)| {
|
|
||||||
let (m,n) = subrule.to_mesh(iters_left - 1);
|
|
||||||
(m, *subxform, n)
|
|
||||||
}).collect();
|
|
||||||
|
|
||||||
// Tally up node count:
|
|
||||||
subgeom.iter().for_each(|(_,_,n)| nodes += n);
|
|
||||||
|
|
||||||
let g: Vec<OpenMesh> = subgeom.iter().map(|(m,x,_)| m.transform(*x)).collect();
|
|
||||||
|
|
||||||
// Connect geometry from this rule (not child rules):
|
|
||||||
return (rs.geom.connect(&g), nodes);
|
|
||||||
}
|
|
||||||
Rule::EmptyRule => {
|
|
||||||
return (empty_mesh(), nodes);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// is there a better way to do this?
|
|
||||||
fn empty_mesh() -> OpenMesh {
|
|
||||||
OpenMesh {
|
|
||||||
verts: vec![],
|
|
||||||
faces: vec![],
|
|
||||||
exit_groups: vec![],
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cube() -> OpenMesh {
|
|
||||||
OpenMesh {
|
|
||||||
verts: vec![
|
|
||||||
vertex(0.0, 0.0, 0.0),
|
|
||||||
vertex(1.0, 0.0, 0.0),
|
|
||||||
vertex(0.0, 1.0, 0.0),
|
|
||||||
vertex(1.0, 1.0, 0.0),
|
|
||||||
vertex(0.0, 0.0, 1.0),
|
|
||||||
vertex(1.0, 0.0, 1.0),
|
|
||||||
vertex(0.0, 1.0, 1.0),
|
|
||||||
vertex(1.0, 1.0, 1.0),
|
|
||||||
],
|
|
||||||
faces: vec![
|
|
||||||
Tag::Body(0), Tag::Body(3), Tag::Body(1),
|
|
||||||
Tag::Body(0), Tag::Body(2), Tag::Body(3),
|
|
||||||
Tag::Body(1), Tag::Body(7), Tag::Body(5),
|
|
||||||
Tag::Body(1), Tag::Body(3), Tag::Body(7),
|
|
||||||
Tag::Body(5), Tag::Body(6), Tag::Body(4),
|
|
||||||
Tag::Body(5), Tag::Body(7), Tag::Body(6),
|
|
||||||
Tag::Body(4), Tag::Body(2), Tag::Body(0),
|
|
||||||
Tag::Body(4), Tag::Body(6), Tag::Body(2),
|
|
||||||
Tag::Body(2), Tag::Body(7), Tag::Body(3),
|
|
||||||
Tag::Body(2), Tag::Body(6), Tag::Body(7),
|
|
||||||
Tag::Body(0), Tag::Body(1), Tag::Body(5),
|
|
||||||
Tag::Body(0), Tag::Body(5), Tag::Body(4),
|
|
||||||
],
|
|
||||||
exit_groups: vec![],
|
|
||||||
}.transform(geometry::Translation3::new(-0.5, -0.5, -0.5).to_homogeneous())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn curve_horn_start() -> RuleStep {
|
|
||||||
let id = nalgebra::geometry::Transform3::identity().to_homogeneous();
|
|
||||||
let flip180 = nalgebra::geometry::Rotation3::from_axis_angle(
|
|
||||||
&nalgebra::Vector3::y_axis(),
|
|
||||||
std::f32::consts::PI).to_homogeneous();
|
|
||||||
RuleStep {
|
|
||||||
geom: OpenMesh {
|
|
||||||
verts: vec![],
|
|
||||||
faces: vec![
|
|
||||||
Tag::Exit(1, 0), Tag::Exit(1, 2), Tag::Exit(0, 1),
|
|
||||||
Tag::Exit(1, 2), Tag::Exit(0, 3), Tag::Exit(0, 1),
|
|
||||||
Tag::Exit(0, 0), Tag::Exit(0, 2), Tag::Exit(1, 1),
|
|
||||||
Tag::Exit(0, 2), Tag::Exit(1, 3), Tag::Exit(1, 1),
|
|
||||||
Tag::Exit(0, 3), Tag::Exit(1, 2), Tag::Exit(0, 2),
|
|
||||||
Tag::Exit(1, 2), Tag::Exit(1, 3), Tag::Exit(0, 2),
|
|
||||||
Tag::Exit(1, 0), Tag::Exit(0, 1), Tag::Exit(0, 0),
|
|
||||||
Tag::Exit(1, 1), Tag::Exit(1, 0), Tag::Exit(0, 0),
|
|
||||||
// The above is connecting group 0 to group 1,
|
|
||||||
// straight across + with diagonal - but with group 1
|
|
||||||
// being flipped 180, so we remap vertices (0,1,2,3)
|
|
||||||
// to (1,0,3,2) and then flip winding order.
|
|
||||||
],
|
|
||||||
exit_groups: vec![4, 4],
|
|
||||||
},
|
|
||||||
final_geom: empty_mesh(),
|
|
||||||
children: vec![
|
|
||||||
(Rule::Recurse(curve_horn_thing_rule), id), // exit group 0
|
|
||||||
(Rule::Recurse(curve_horn_thing_rule), flip180), // exit group 1
|
|
||||||
],
|
|
||||||
}
|
|
||||||
// TODO: The starting vertices above are duplicated because I
|
|
||||||
// don't have any way for an exit vertex to stand in for multiple
|
|
||||||
// child vertices that happen to share the same location. I don't
|
|
||||||
// yet know a good way around this, so I am duplicating vertices.
|
|
||||||
}
|
|
||||||
|
|
||||||
fn curve_horn_thing_rule() -> RuleStep {
|
|
||||||
|
|
||||||
let y = &Vector3::y_axis();
|
|
||||||
|
|
||||||
let m: Mat4 = geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
|
||||||
Matrix4::new_scaling(0.95) *
|
|
||||||
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous();
|
|
||||||
|
|
||||||
let verts = vec![
|
|
||||||
vertex(-0.5, -0.5, 0.0),
|
|
||||||
vertex(0.5, -0.5, 0.0),
|
|
||||||
vertex(-0.5, 0.5, 0.0),
|
|
||||||
vertex(0.5, 0.5, 0.0),
|
|
||||||
];
|
|
||||||
let final_verts: Vec<Vertex> = verts.iter().map(|v| m * v).collect();
|
|
||||||
|
|
||||||
let geom = OpenMesh {
|
|
||||||
verts: verts,
|
|
||||||
faces: vec![
|
|
||||||
// The below is just connecting two groups of 4 vertices
|
|
||||||
// each, straight across and then to the next. Note that
|
|
||||||
// since 'verts' doesn't go in a circle, it will look a
|
|
||||||
// little strange.
|
|
||||||
Tag::Body(1), Tag::Exit(0, 3), Tag::Exit(0, 1),
|
|
||||||
Tag::Body(1), Tag::Body(3), Tag::Exit(0, 3),
|
|
||||||
Tag::Exit(0, 0), Tag::Body(2), Tag::Body(0),
|
|
||||||
Tag::Exit(0, 0), Tag::Exit(0, 2), Tag::Body(2),
|
|
||||||
Tag::Body(2), Tag::Exit(0, 3), Tag::Body(3),
|
|
||||||
Tag::Body(2), Tag::Exit(0, 2), Tag::Exit(0, 3),
|
|
||||||
Tag::Body(0), Tag::Body(1), Tag::Exit(0, 1),
|
|
||||||
Tag::Body(0), Tag::Exit(0, 1), Tag::Exit(0, 0),
|
|
||||||
// TODO: I should really generate these, not hard-code them.
|
|
||||||
],
|
|
||||||
exit_groups: vec![4],
|
|
||||||
};
|
|
||||||
|
|
||||||
// TODO: This could be made slightly nicer by taking it to a peak
|
|
||||||
// instead of just flattening it in XY, but this is a pretty minor
|
|
||||||
// change.
|
|
||||||
let final_geom = OpenMesh {
|
|
||||||
verts: final_verts,
|
|
||||||
faces: vec![
|
|
||||||
Tag::Body(0), Tag::Body(1), Tag::Body(3),
|
|
||||||
Tag::Body(0), Tag::Body(3), Tag::Body(2),
|
|
||||||
],
|
|
||||||
exit_groups: vec![],
|
|
||||||
};
|
|
||||||
|
|
||||||
RuleStep{
|
|
||||||
geom: geom,
|
|
||||||
final_geom: final_geom,
|
|
||||||
children: vec![
|
|
||||||
(Rule::Recurse(curve_horn_thing_rule), m), // exit group 0
|
|
||||||
],
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn cube_thing_rule() -> RuleStep {
|
|
||||||
|
|
||||||
let mesh = cube();
|
|
||||||
|
|
||||||
// Quarter-turn in radians:
|
|
||||||
let qtr = std::f32::consts::FRAC_PI_2;
|
|
||||||
|
|
||||||
let y = &Vector3::y_axis();
|
|
||||||
let z = &Vector3::z_axis();
|
|
||||||
|
|
||||||
// Each element of this turns to a branch for the recursion:
|
|
||||||
let turns: Vec<Mat4> = vec![
|
|
||||||
geometry::Transform3::identity().to_homogeneous(),
|
|
||||||
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
|
||||||
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
|
||||||
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
|
||||||
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
|
||||||
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
|
||||||
];
|
|
||||||
|
|
||||||
let gen_rulestep = |rot: &Mat4| -> (Rule, Mat4) {
|
|
||||||
let m: Mat4 = rot *
|
|
||||||
Matrix4::new_scaling(0.5) *
|
|
||||||
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
|
||||||
(Rule::Recurse(cube_thing_rule), m)
|
|
||||||
};
|
|
||||||
|
|
||||||
RuleStep {
|
|
||||||
geom: mesh,
|
|
||||||
final_geom: empty_mesh(), // no exit groups
|
|
||||||
children: turns.iter().map(gen_rulestep).collect(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
|
mesh_scratch::examples::main();
|
||||||
let run_test = |r: Rule, iters, name| {
|
|
||||||
println!("Running {}...", name);
|
|
||||||
let (mesh, nodes) = r.to_mesh(iters);
|
|
||||||
println!("Merged {} nodes", nodes);
|
|
||||||
let fname = format!("{}.stl", name);
|
|
||||||
println!("Writing {}...", fname);
|
|
||||||
mesh.write_stl_file(&fname).unwrap();
|
|
||||||
};
|
|
||||||
|
|
||||||
run_test(Rule::Recurse(cube_thing_rule), 3, "cube_thing");
|
|
||||||
run_test(Rule::Recurse(curve_horn_thing_rule), 100, "curve_horn_thing");
|
|
||||||
run_test(Rule::Recurse(curve_horn_start), 100, "curve_horn2");
|
|
||||||
}
|
}
|
||||||
|
|||||||
140
src/openmesh.rs
Normal file
140
src/openmesh.rs
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
//pub mod openmesh;
|
||||||
|
|
||||||
|
use nalgebra::*;
|
||||||
|
use std::fs::OpenOptions;
|
||||||
|
use std::io;
|
||||||
|
|
||||||
|
/// A type for custom mesh vertices. Initialize with [vertex][self::vertex].
|
||||||
|
pub type Vertex = Vector4<f32>;
|
||||||
|
pub type Mat4 = Matrix4<f32>;
|
||||||
|
|
||||||
|
/// Initializes a vertex:
|
||||||
|
pub fn vertex(x: f32, y: f32, z: f32) -> Vertex {
|
||||||
|
Vertex::new(x, y, z, 1.0)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub enum Tag {
|
||||||
|
Body(usize),
|
||||||
|
Exit(usize, usize), // (group, vertex)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Debug)]
|
||||||
|
pub struct OpenMesh {
|
||||||
|
// Vertices (in homogeneous coordinates).
|
||||||
|
pub verts: Vec<Vertex>,
|
||||||
|
// Triangles, taken as every 3 values, treated each as indices
|
||||||
|
// into 'verts':
|
||||||
|
pub faces: Vec<Tag>,
|
||||||
|
pub exit_groups: Vec<usize>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl OpenMesh {
|
||||||
|
|
||||||
|
pub fn transform(&self, xfm: Mat4) -> OpenMesh {
|
||||||
|
OpenMesh {
|
||||||
|
verts: self.verts.iter().map(|v| xfm * v).collect(),
|
||||||
|
// TODO: Is the above faster if I pack vectors into a
|
||||||
|
// bigger matrix, and transform that?
|
||||||
|
faces: self.faces.clone(), // TODO: Use Rc?
|
||||||
|
exit_groups: self.exit_groups.clone(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn write_stl_file(&self, fname: &str) -> io::Result<()> {
|
||||||
|
let mut file = OpenOptions::new().write(true).create(true).truncate(true).open(fname)?;
|
||||||
|
self.write_stl(&mut file)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn write_stl<W: std::io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||||
|
|
||||||
|
// Every group of 3 indices in self.faces is one triangle, so
|
||||||
|
// pre-allocate in the format stl_io wants:
|
||||||
|
let num_faces = self.faces.len() / 3;
|
||||||
|
let mut triangles = vec![stl_io::Triangle {
|
||||||
|
normal: [0.0; 3],
|
||||||
|
vertices: [[0.0; 3]; 3],
|
||||||
|
}; num_faces];
|
||||||
|
|
||||||
|
let get_vert = |j| {
|
||||||
|
match self.faces[j] {
|
||||||
|
Tag::Body(n) => self.verts[n].xyz(),
|
||||||
|
Tag::Exit(_, _) => panic!("Cannot write_stl() if mesh has exit groups!"),
|
||||||
|
}
|
||||||
|
};
|
||||||
|
// TODO: Handle this behavior
|
||||||
|
|
||||||
|
// Turn every face into an stl_io::Triangle:
|
||||||
|
for i in 0..num_faces {
|
||||||
|
let v0 = get_vert(3*i + 0);
|
||||||
|
let v1 = get_vert(3*i + 1);
|
||||||
|
let v2 = get_vert(3*i + 2);
|
||||||
|
|
||||||
|
let normal = (v1-v0).cross(&(v2-v0));
|
||||||
|
|
||||||
|
triangles[i].normal.copy_from_slice(&normal.as_slice());
|
||||||
|
triangles[i].vertices[0].copy_from_slice(v0.as_slice());
|
||||||
|
triangles[i].vertices[1].copy_from_slice(v1.as_slice());
|
||||||
|
triangles[i].vertices[2].copy_from_slice(v2.as_slice());
|
||||||
|
// TODO: Is there a cleaner way to do the above?
|
||||||
|
}
|
||||||
|
|
||||||
|
// I could also solve this with something like
|
||||||
|
// https://doc.rust-lang.org/std/primitive.slice.html#method.chunks_exact
|
||||||
|
// however I don't know what performance difference may be.
|
||||||
|
|
||||||
|
stl_io::write_stl(writer, triangles.iter())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn connect(&self, others: &Vec<OpenMesh>) -> OpenMesh {
|
||||||
|
|
||||||
|
// Copy body vertices & faces:
|
||||||
|
let mut verts: Vec<Vertex> = self.verts.clone();
|
||||||
|
let mut faces = self.faces.clone();
|
||||||
|
|
||||||
|
let mut exit_groups: Vec<usize> = vec![];
|
||||||
|
|
||||||
|
let mut body_offset = self.verts.len();
|
||||||
|
let mut exit_offset = 0;
|
||||||
|
let mut offsets: Vec<usize> = vec![0; others.len()];
|
||||||
|
for (i,other) in others.iter().enumerate() {
|
||||||
|
|
||||||
|
// Append body vertices & exit vertices directly:
|
||||||
|
verts.append(&mut other.verts.clone());
|
||||||
|
|
||||||
|
// Append faces, shifting each kind by respective offset:
|
||||||
|
faces.extend(other.faces.iter().map(|t| {
|
||||||
|
match t {
|
||||||
|
Tag::Body(n) => Tag::Body(n + body_offset),
|
||||||
|
Tag::Exit(g, n) => Tag::Exit(g + exit_groups.len(), n + exit_offset),
|
||||||
|
}
|
||||||
|
}));
|
||||||
|
if i < self.exit_groups.len() {
|
||||||
|
exit_offset += self.exit_groups[i];
|
||||||
|
}
|
||||||
|
exit_groups.append(&mut other.exit_groups.clone());
|
||||||
|
|
||||||
|
offsets[i] = body_offset;
|
||||||
|
// Increase offsets by the number of elements we appended:
|
||||||
|
body_offset += other.verts.len();
|
||||||
|
}
|
||||||
|
|
||||||
|
// All of the Exit face indices from 'self' need to be
|
||||||
|
// modified to refer to Body vertices of something in
|
||||||
|
// 'others':
|
||||||
|
for i in 0..faces.len() {
|
||||||
|
match faces[i] {
|
||||||
|
Tag::Exit(g, n) => {
|
||||||
|
faces[i] = Tag::Body(n + offsets[g]);
|
||||||
|
},
|
||||||
|
_ => { },
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
OpenMesh {
|
||||||
|
verts: verts,
|
||||||
|
faces: faces,
|
||||||
|
exit_groups: exit_groups,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
41
src/prim.rs
Normal file
41
src/prim.rs
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
use nalgebra::*;
|
||||||
|
use crate::openmesh::{OpenMesh, Tag, vertex};
|
||||||
|
|
||||||
|
// is there a better way to do this?
|
||||||
|
pub fn empty_mesh() -> OpenMesh {
|
||||||
|
OpenMesh {
|
||||||
|
verts: vec![],
|
||||||
|
faces: vec![],
|
||||||
|
exit_groups: vec![],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn cube() -> OpenMesh {
|
||||||
|
OpenMesh {
|
||||||
|
verts: vec![
|
||||||
|
vertex(0.0, 0.0, 0.0),
|
||||||
|
vertex(1.0, 0.0, 0.0),
|
||||||
|
vertex(0.0, 1.0, 0.0),
|
||||||
|
vertex(1.0, 1.0, 0.0),
|
||||||
|
vertex(0.0, 0.0, 1.0),
|
||||||
|
vertex(1.0, 0.0, 1.0),
|
||||||
|
vertex(0.0, 1.0, 1.0),
|
||||||
|
vertex(1.0, 1.0, 1.0),
|
||||||
|
],
|
||||||
|
faces: vec![
|
||||||
|
Tag::Body(0), Tag::Body(3), Tag::Body(1),
|
||||||
|
Tag::Body(0), Tag::Body(2), Tag::Body(3),
|
||||||
|
Tag::Body(1), Tag::Body(7), Tag::Body(5),
|
||||||
|
Tag::Body(1), Tag::Body(3), Tag::Body(7),
|
||||||
|
Tag::Body(5), Tag::Body(6), Tag::Body(4),
|
||||||
|
Tag::Body(5), Tag::Body(7), Tag::Body(6),
|
||||||
|
Tag::Body(4), Tag::Body(2), Tag::Body(0),
|
||||||
|
Tag::Body(4), Tag::Body(6), Tag::Body(2),
|
||||||
|
Tag::Body(2), Tag::Body(7), Tag::Body(3),
|
||||||
|
Tag::Body(2), Tag::Body(6), Tag::Body(7),
|
||||||
|
Tag::Body(0), Tag::Body(1), Tag::Body(5),
|
||||||
|
Tag::Body(0), Tag::Body(5), Tag::Body(4),
|
||||||
|
],
|
||||||
|
exit_groups: vec![],
|
||||||
|
}.transform(geometry::Translation3::new(-0.5, -0.5, -0.5).to_homogeneous())
|
||||||
|
}
|
||||||
82
src/rule.rs
Normal file
82
src/rule.rs
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
use crate::openmesh::{OpenMesh, Mat4};
|
||||||
|
use crate::prim;
|
||||||
|
|
||||||
|
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
||||||
|
pub enum Rule {
|
||||||
|
// Produce geometry, and possibly recurse further:
|
||||||
|
Recurse(fn () -> RuleStep),
|
||||||
|
// Stop recursing here:
|
||||||
|
EmptyRule,
|
||||||
|
}
|
||||||
|
// TODO: Rename rules?
|
||||||
|
// TODO: It may be possible to have just a 'static' rule that requires
|
||||||
|
// no function call.
|
||||||
|
|
||||||
|
pub struct RuleStep {
|
||||||
|
// The geometry generated by this rule on its own (not by any of
|
||||||
|
// the child rules).
|
||||||
|
pub geom: OpenMesh,
|
||||||
|
|
||||||
|
// The "final" geometry, used only if recursion must be stopped.
|
||||||
|
// This should be in the same coordinate space as 'geom', and
|
||||||
|
// properly close any exit groups that it may have (and have no
|
||||||
|
// exit groups of its own).
|
||||||
|
pub final_geom: OpenMesh,
|
||||||
|
|
||||||
|
// Child rules, paired with the transform that will be applied to
|
||||||
|
// all of their geometry
|
||||||
|
pub children: Vec<(Rule, Mat4)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Rule {
|
||||||
|
|
||||||
|
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
|
||||||
|
// could end up having a lot of identical geometry that need not be
|
||||||
|
// duplicated until it is transformed into the global space.
|
||||||
|
//
|
||||||
|
// This might produce bigger gains if I rewrite rule_to_mesh so that
|
||||||
|
// rather than repeatedly transforming meshes, it stacks
|
||||||
|
// transformations and then applies them all at once.
|
||||||
|
|
||||||
|
pub fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
let mut nodes: u32 = 1;
|
||||||
|
|
||||||
|
if iters_left <= 0 {
|
||||||
|
match self {
|
||||||
|
Rule::Recurse(f) => {
|
||||||
|
let rs: RuleStep = f();
|
||||||
|
return (rs.final_geom, 1);
|
||||||
|
}
|
||||||
|
Rule::EmptyRule => {
|
||||||
|
return (prim::empty_mesh(), nodes);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
match self {
|
||||||
|
Rule::Recurse(f) => {
|
||||||
|
let rs: RuleStep = f();
|
||||||
|
|
||||||
|
// Get sub-geometry (from child rules) and transform it:
|
||||||
|
let subgeom: Vec<(OpenMesh, Mat4, u32)> = rs.children.iter().map(|(subrule, subxform)| {
|
||||||
|
let (m,n) = subrule.to_mesh(iters_left - 1);
|
||||||
|
(m, *subxform, n)
|
||||||
|
}).collect();
|
||||||
|
|
||||||
|
// Tally up node count:
|
||||||
|
subgeom.iter().for_each(|(_,_,n)| nodes += n);
|
||||||
|
|
||||||
|
let g: Vec<OpenMesh> = subgeom.iter().map(|(m,x,_)| m.transform(*x)).collect();
|
||||||
|
|
||||||
|
// Connect geometry from this rule (not child rules):
|
||||||
|
return (rs.geom.connect(&g), nodes);
|
||||||
|
}
|
||||||
|
Rule::EmptyRule => {
|
||||||
|
return (prim::empty_mesh(), nodes);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
Loading…
x
Reference in New Issue
Block a user