Code builds with cube_thing_rule. Still has bugs.
This commit is contained in:
parent
4da007943d
commit
9e92a469b8
281
src/main.rs
281
src/main.rs
@ -1,10 +1,9 @@
|
|||||||
//use std::io;
|
//use std::io;
|
||||||
use tri_mesh::prelude::*;
|
use tri_mesh::prelude as tm;
|
||||||
//use nalgebra::base::dimension::{U1, U4};
|
use nalgebra::*;
|
||||||
//use nalgebra::Matrix4;
|
|
||||||
|
|
||||||
/// A type for custom mesh vertices. Initialize with [vertex][self::vertex].
|
/// A type for custom mesh vertices. Initialize with [vertex][self::vertex].
|
||||||
pub type Vertex = nalgebra::Vector4<f32>;
|
pub type Vertex = Vector4<f32>;
|
||||||
|
|
||||||
/// Initializes a vertex for a custom mesh.
|
/// Initializes a vertex for a custom mesh.
|
||||||
pub fn vertex(x: f32, y: f32, z: f32) -> Vertex {
|
pub fn vertex(x: f32, y: f32, z: f32) -> Vertex {
|
||||||
@ -37,7 +36,7 @@ struct OpenMesh {
|
|||||||
|
|
||||||
impl OpenMesh {
|
impl OpenMesh {
|
||||||
|
|
||||||
fn transform(&self, xfm: nalgebra::Matrix4<f32>) -> OpenMesh {
|
fn transform(&self, xfm: Matrix4<f32>) -> OpenMesh {
|
||||||
OpenMesh {
|
OpenMesh {
|
||||||
verts: self.verts.iter().map(|v| xfm * v).collect(),
|
verts: self.verts.iter().map(|v| xfm * v).collect(),
|
||||||
faces: self.faces.clone(), // TODO: Use Rc?
|
faces: self.faces.clone(), // TODO: Use Rc?
|
||||||
@ -84,7 +83,7 @@ impl OpenMesh {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn to_trimesh(&self) -> Result<Mesh, tri_mesh::mesh_builder::Error> {
|
fn to_trimesh(&self) -> Result<tm::Mesh, tri_mesh::mesh_builder::Error> {
|
||||||
let mut v: Vec<f64> = vec![0.0; self.verts.len() * 3];
|
let mut v: Vec<f64> = vec![0.0; self.verts.len() * 3];
|
||||||
for (i, vert) in self.verts.iter().enumerate() {
|
for (i, vert) in self.verts.iter().enumerate() {
|
||||||
v[3*i] = vert[0].into();
|
v[3*i] = vert[0].into();
|
||||||
@ -92,7 +91,7 @@ impl OpenMesh {
|
|||||||
v[3*i+2] = vert[2].into();
|
v[3*i+2] = vert[2].into();
|
||||||
}
|
}
|
||||||
let faces: Vec<u32> = self.faces.iter().map(|f| *f as _).collect();
|
let faces: Vec<u32> = self.faces.iter().map(|f| *f as _).collect();
|
||||||
MeshBuilder::new().with_indices(faces).with_positions(v).build()
|
tm::MeshBuilder::new().with_indices(faces).with_positions(v).build()
|
||||||
}
|
}
|
||||||
|
|
||||||
// Just assume this is broken
|
// Just assume this is broken
|
||||||
@ -149,84 +148,89 @@ impl OpenMesh {
|
|||||||
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
// TODO: Do I benefit with Rc<Rule> below so Rule can be shared?
|
||||||
|
|
||||||
enum Rule {
|
enum Rule {
|
||||||
// Recurse further. Input is "seeds" that further geometry should
|
// Produce geometry, and possibly recurse further:
|
||||||
// *replace*. Generated geometry must have the same outer
|
Recurse(fn () -> Vec<RuleStep>),
|
||||||
// boundary as the seeds, and be in the same coordinate space as
|
|
||||||
// the input.
|
|
||||||
Recurse(fn (Vec<Mesh>) -> Vec<RuleStep>),
|
|
||||||
// Stop recursing here:
|
// Stop recursing here:
|
||||||
EmptyRule,
|
EmptyRule,
|
||||||
}
|
}
|
||||||
// TODO: Rename rules?
|
// TODO: Rename rules?
|
||||||
|
|
||||||
struct RuleStep {
|
struct RuleStep {
|
||||||
// The 'final' geometry generated at this step.
|
// The geometry generated by this rule on its own - and none of
|
||||||
geom: Mesh,
|
// the child rules.
|
||||||
// The 'seed' geometry from this step. If recursion stops
|
geom: OpenMesh,
|
||||||
// (whether because rule is EmptyRule or because recursion depth
|
|
||||||
// has been hit), this will be transformed with 'xform' and
|
|
||||||
// appended with 'geom'. If recursion continues, this geometry is
|
|
||||||
// passed as the input to the next rule. (TODO: rule_to_mesh
|
|
||||||
// needs to do the 'recursion stops' part.)
|
|
||||||
//
|
|
||||||
// This is in the coordinate space that 'rule' should run in -
|
|
||||||
// thus, if it is transformed with 'xform', it will be in the same
|
|
||||||
// coordinate space as 'geom'.
|
|
||||||
seeds: Vec<Mesh>,
|
|
||||||
// The next rule to run. If EmptyRule, then stop here (and
|
// The next rule to run. If EmptyRule, then stop here (and
|
||||||
// 'xform' is irrelevant).
|
// 'xform' is irrelevant).
|
||||||
rule: Box<Rule>,
|
rule: Box<Rule>,
|
||||||
// The transformation which puts 'seeds' and any geometry from
|
// The transformation to apply to geometry generated by 'rule' and
|
||||||
// 'rule' (if applicable) into the same coordinate space as
|
// any child rules.
|
||||||
// 'geom'.
|
xform: Matrix4<f32>,
|
||||||
xform: Mat4,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// is there a better way to do this?
|
// is there a better way to do this?
|
||||||
fn empty_mesh() -> Mesh {
|
fn empty_mesh() -> OpenMesh {
|
||||||
MeshBuilder::new().with_indices(vec![]).with_positions(vec![]).build().unwrap()
|
OpenMesh {
|
||||||
|
verts: vec![],
|
||||||
|
faces: vec![],
|
||||||
|
idxs_entrance: vec![],
|
||||||
|
idxs_exit: vec![],
|
||||||
|
idxs_body: (0, 0),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn curve_horn_start(_v: Vec<Mesh>) -> Vec<RuleStep> {
|
/*
|
||||||
|
fn curve_horn_start() -> Vec<RuleStep> {
|
||||||
// Seed is a square in XY, sidelength 1, centered at (0,0,0):
|
// Seed is a square in XY, sidelength 1, centered at (0,0,0):
|
||||||
let seed = {
|
let seed = {
|
||||||
let indices: Vec<u32> = vec![0, 1, 2, 0, 2, 3];
|
let m = OpenMesh {
|
||||||
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0];
|
verts: vec![
|
||||||
let mut s = MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
|
vertex(0.0, 0.0, 0.0),
|
||||||
s.apply_transformation(Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
|
vertex(1.0, 0.0, 0.0),
|
||||||
s
|
vertex(1.0, 1.0, 0.0),
|
||||||
|
vertex(0.0, 1.0, 0.0),
|
||||||
|
],
|
||||||
|
faces: vec![
|
||||||
|
0, 1, 2,
|
||||||
|
0, 2, 3,
|
||||||
|
],
|
||||||
|
idxs_entrance: vec![0],
|
||||||
|
idxs_exit: vec![0],
|
||||||
|
idxs_body: (0, 0),
|
||||||
|
};
|
||||||
|
let xform = nalgebra::geometry::Translation3::new(-0.5, -0.5, 0.0).to_homogeneous();
|
||||||
|
m.transform(xform)
|
||||||
};
|
};
|
||||||
vec![
|
vec![
|
||||||
// Since neither of the other two rules *start* with geometry:
|
// Since neither of the other two rules *start* with geometry:
|
||||||
RuleStep { geom: seed.clone(),
|
RuleStep { geom: seed.clone(),
|
||||||
rule: Box::new(Rule::EmptyRule),
|
rule: Box::new(Rule::EmptyRule),
|
||||||
xform: Matrix4::identity(),
|
xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
||||||
seeds: vec![]
|
|
||||||
},
|
},
|
||||||
// Recurse in both directions:
|
// Recurse in both directions:
|
||||||
RuleStep { geom: empty_mesh(),
|
RuleStep { geom: seed.clone(),
|
||||||
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
||||||
xform: Matrix4::identity(),
|
xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
||||||
seeds: vec![seed.clone()],
|
|
||||||
},
|
},
|
||||||
RuleStep { geom: empty_mesh(),
|
RuleStep { geom: seed.clone(),
|
||||||
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
rule: Box::new(Rule::Recurse(curve_horn_thing_rule)),
|
||||||
xform: Matrix4::from_angle_y(Rad::turn_div_2()),
|
xform: nalgebra::geometry::Rotation3::from_axis_angle(
|
||||||
seeds: vec![seed.clone()],
|
&nalgebra::Vector3::y_axis(),
|
||||||
|
std::f32::consts::FRAC_PI_2).to_homogeneous(),
|
||||||
},
|
},
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|
||||||
//use std::convert::TryFrom;
|
//use std::convert::TryFrom;
|
||||||
|
|
||||||
fn curve_horn_thing_rule(v: Vec<Mesh>) -> Vec<RuleStep> {
|
fn curve_horn_thing_rule() -> Vec<RuleStep> {
|
||||||
|
|
||||||
let gen_geom = |seed: &Mesh| -> RuleStep {
|
let gen_geom = |seed: &Mesh| -> RuleStep {
|
||||||
let mut mesh = seed.clone();
|
let mut mesh = seed.clone();
|
||||||
|
|
||||||
let m: Mat4 = Matrix4::from_angle_y(Rad(0.1)) *
|
let m: Mat4 = tm::Matrix4::from_angle_y(Rad(0.1)) *
|
||||||
Matrix4::from_scale(0.95) *
|
tm::Matrix4::from_scale(0.95) *
|
||||||
Matrix4::from_translation(vec3(0.0, 0.0, 0.2));
|
tm::Matrix4::from_translation(vec3(0.0, 0.0, 0.2));
|
||||||
|
|
||||||
let r = Rule::Recurse(curve_horn_thing_rule);
|
let r = Rule::Recurse(curve_horn_thing_rule);
|
||||||
mesh.apply_transformation(m);
|
mesh.apply_transformation(m);
|
||||||
@ -279,7 +283,7 @@ fn curve_horn_thing_rule(v: Vec<Mesh>) -> Vec<RuleStep> {
|
|||||||
// that I cannot use MeshBuilder this way and then append
|
// that I cannot use MeshBuilder this way and then append
|
||||||
// meshes - it just leads to disconnected geometry
|
// meshes - it just leads to disconnected geometry
|
||||||
|
|
||||||
let joined = match MeshBuilder::new().
|
let joined = match tm::MeshBuilder::new().
|
||||||
with_positions(verts).
|
with_positions(verts).
|
||||||
with_indices(idxs).
|
with_indices(idxs).
|
||||||
build()
|
build()
|
||||||
@ -315,7 +319,7 @@ fn points_to_xform(v0: Point3<f64>, v1: Point3<f64>, v2: Point3<f64>) -> Mat4 {
|
|||||||
let yn: Vec3 = zn.cross(xn);
|
let yn: Vec3 = zn.cross(xn);
|
||||||
let s = x.magnitude();
|
let s = x.magnitude();
|
||||||
|
|
||||||
let _m: Mat4 = Matrix4::from_cols(
|
let _m: Mat4 = tm::Matrix4::from_cols(
|
||||||
(xn*s).extend(0.0), // new X
|
(xn*s).extend(0.0), // new X
|
||||||
(yn*s).extend(0.0), // new Y
|
(yn*s).extend(0.0), // new Y
|
||||||
(zn*s).extend(0.0), // new Z
|
(zn*s).extend(0.0), // new Z
|
||||||
@ -323,41 +327,75 @@ fn points_to_xform(v0: Point3<f64>, v1: Point3<f64>, v2: Point3<f64>) -> Mat4 {
|
|||||||
);
|
);
|
||||||
return _m;
|
return _m;
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
fn cube_thing_rule(_v: Vec<Mesh>) -> Vec<RuleStep> {
|
fn cube() -> OpenMesh {
|
||||||
|
OpenMesh {
|
||||||
|
verts: vec![
|
||||||
|
vertex(0.0, 0.0, 0.0),
|
||||||
|
vertex(1.0, 0.0, 0.0),
|
||||||
|
vertex(0.0, 1.0, 0.0),
|
||||||
|
vertex(1.0, 1.0, 0.0),
|
||||||
|
vertex(0.0, 0.0, 1.0),
|
||||||
|
vertex(1.0, 0.0, 1.0),
|
||||||
|
vertex(0.0, 1.0, 1.0),
|
||||||
|
vertex(1.0, 1.0, 1.0),
|
||||||
|
],
|
||||||
|
faces: vec![
|
||||||
|
0, 3, 1,
|
||||||
|
0, 2, 3,
|
||||||
|
1, 7, 5,
|
||||||
|
1, 3, 7,
|
||||||
|
5, 6, 4,
|
||||||
|
5, 7, 6,
|
||||||
|
4, 2, 0,
|
||||||
|
4, 6, 2,
|
||||||
|
2, 7, 3,
|
||||||
|
2, 6, 7,
|
||||||
|
0, 1, 5,
|
||||||
|
0, 5, 4,
|
||||||
|
],
|
||||||
|
idxs_entrance: vec![],
|
||||||
|
idxs_exit: vec![],
|
||||||
|
idxs_body: (0, 8),
|
||||||
|
}.transform(geometry::Translation3::new(-0.5, -0.5, -0.5).to_homogeneous())
|
||||||
|
}
|
||||||
|
|
||||||
let mesh = MeshBuilder::new().cube().build().unwrap();
|
fn cube_thing_rule() -> Vec<RuleStep> {
|
||||||
|
|
||||||
|
let mesh = cube();
|
||||||
|
|
||||||
// Quarter-turn in radians:
|
// Quarter-turn in radians:
|
||||||
let qtr = Rad::turn_div_4();
|
let qtr = std::f32::consts::FRAC_PI_2;
|
||||||
|
|
||||||
|
let y = &Vector3::y_axis();
|
||||||
|
let z = &Vector3::z_axis();
|
||||||
|
|
||||||
// Each element of this turns to a branch for the recursion:
|
// Each element of this turns to a branch for the recursion:
|
||||||
let turns: Vec<Mat4> = vec![
|
let turns: Vec<Matrix4<f32>> = vec![
|
||||||
Matrix4::identity(),
|
geometry::Transform3::identity().to_homogeneous(),
|
||||||
Matrix4::from_angle_y(qtr),
|
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
||||||
Matrix4::from_angle_y(qtr * 2.0),
|
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
||||||
Matrix4::from_angle_y(qtr * 3.0),
|
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
||||||
Matrix4::from_angle_z(qtr),
|
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
||||||
Matrix4::from_angle_z(-qtr),
|
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||||
];
|
];
|
||||||
|
|
||||||
let gen_rulestep = |rot: &Mat4| -> RuleStep {
|
let gen_rulestep = |rot: &Matrix4<f32>| -> RuleStep {
|
||||||
let m: Mat4 = rot *
|
let m: Matrix4<f32> = rot *
|
||||||
Matrix4::from_scale(0.5) *
|
Matrix4::new_scaling(0.5) *
|
||||||
Matrix4::from_translation(vec3(6.0, 0.0, 0.0));
|
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||||
let r = Rule::Recurse(cube_thing_rule);
|
let r = Rule::Recurse(cube_thing_rule);
|
||||||
let mut m2 = mesh.clone();
|
|
||||||
m2.apply_transformation(m);
|
let m2 = mesh.transform(m);
|
||||||
RuleStep { geom: m2, rule: Box::new(r), xform: m, seeds: vec![] }
|
RuleStep { geom: m2, rule: Box::new(r), xform: m }
|
||||||
};
|
};
|
||||||
// TODO: Why is 'mesh' present in each RuleStep? This is just
|
|
||||||
// duplicate geometry! Either 'm' applies to 'mesh' (and the
|
|
||||||
// definition of RuleStep changes) - or 'mesh' needs to already be
|
|
||||||
// transformed.
|
|
||||||
|
|
||||||
turns.iter().map(gen_rulestep).collect()
|
turns.iter().map(gen_rulestep).collect()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Have I any need of this after making OpenMesh?
|
||||||
|
/*
|
||||||
struct MeshBound<'a> {
|
struct MeshBound<'a> {
|
||||||
m: &'a Mesh,
|
m: &'a Mesh,
|
||||||
start: HalfEdgeID,
|
start: HalfEdgeID,
|
||||||
@ -420,6 +458,7 @@ impl<'a> Iterator for MeshBound<'a> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
//fn mesh_boundary(m: &Mesh) -> Vec<tri_mesh::HalfEdgeID> {
|
//fn mesh_boundary(m: &Mesh) -> Vec<tri_mesh::HalfEdgeID> {
|
||||||
//}
|
//}
|
||||||
@ -432,9 +471,9 @@ impl<'a> Iterator for MeshBound<'a> {
|
|||||||
// rather than repeatedly transforming meshes, it stacks
|
// rather than repeatedly transforming meshes, it stacks
|
||||||
// transformations and then applies them all at once.
|
// transformations and then applies them all at once.
|
||||||
|
|
||||||
fn rule_to_mesh(rule: &Rule, seed: Vec<Mesh>, iters_left: u32) -> (Mesh, u32) {
|
fn rule_to_mesh(rule: &Rule, iters_left: u32) -> (OpenMesh, u32) {
|
||||||
|
|
||||||
let mut mesh = MeshBuilder::new().with_indices(vec![]).with_positions(vec![]).build().unwrap();
|
let mut mesh = empty_mesh();
|
||||||
|
|
||||||
let mut nodes: u32 = 1;
|
let mut nodes: u32 = 1;
|
||||||
|
|
||||||
@ -444,19 +483,21 @@ fn rule_to_mesh(rule: &Rule, seed: Vec<Mesh>, iters_left: u32) -> (Mesh, u32) {
|
|||||||
|
|
||||||
match rule {
|
match rule {
|
||||||
Rule::Recurse(func) => {
|
Rule::Recurse(func) => {
|
||||||
for step in func(seed) {
|
for step in func() {
|
||||||
let subrule: Rule = *step.rule;
|
let subrule: Rule = *step.rule;
|
||||||
let subxform: Mat4 = step.xform;
|
let subxform: Matrix4<f32> = step.xform;
|
||||||
let geom: Mesh = step.geom;
|
let geom: OpenMesh = step.geom;
|
||||||
|
|
||||||
mesh.append(&geom);
|
mesh = mesh.connect_single(&geom);
|
||||||
|
|
||||||
let (mut submesh, subnodes) = rule_to_mesh(
|
let (mut submesh, subnodes) = rule_to_mesh(
|
||||||
&subrule, step.seeds, iters_left - 1);
|
&subrule, iters_left - 1);
|
||||||
submesh.apply_transformation(subxform);
|
|
||||||
|
submesh = submesh.transform(subxform);
|
||||||
|
|
||||||
nodes += subnodes;
|
nodes += subnodes;
|
||||||
|
|
||||||
mesh.append(&submesh);
|
mesh = mesh.connect_single(&submesh);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Rule::EmptyRule => {
|
Rule::EmptyRule => {
|
||||||
@ -466,17 +507,6 @@ fn rule_to_mesh(rule: &Rule, seed: Vec<Mesh>, iters_left: u32) -> (Mesh, u32) {
|
|||||||
(mesh, nodes)
|
(mesh, nodes)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn print_vector(v: &Vec4) -> String {
|
|
||||||
return format!("{},{},{},{}", v.x, v.y, v.z, v.w);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn print_matrix(m: &Mat4) {
|
|
||||||
let mt = m.transpose();
|
|
||||||
println!("[{}]\n[{}]\n[{}]\n[{}]",
|
|
||||||
print_vector(&mt.x), print_vector(&mt.y),
|
|
||||||
print_vector(&mt.z), print_vector(&mt.w));
|
|
||||||
}
|
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
|
|
||||||
println!("DEBUG-------------------------------");
|
println!("DEBUG-------------------------------");
|
||||||
@ -511,7 +541,7 @@ fn main() {
|
|||||||
idxs_body: (4, 4),
|
idxs_body: (4, 4),
|
||||||
};
|
};
|
||||||
|
|
||||||
let xform = nalgebra::geometry::Translation3::new(0.0, 0.0, 1.0).to_homogeneous();
|
let xform = geometry::Translation3::new(0.0, 0.0, 1.0).to_homogeneous();
|
||||||
let m2 = m.transform(xform);
|
let m2 = m.transform(xform);
|
||||||
let m3 = m.connect_single(&m2);
|
let m3 = m.connect_single(&m2);
|
||||||
let m4 = m3.connect_single(&m2.transform(xform));
|
let m4 = m3.connect_single(&m2.transform(xform));
|
||||||
@ -538,83 +568,30 @@ fn main() {
|
|||||||
try_save(&mesh, "openmesh_cube_several.obj");
|
try_save(&mesh, "openmesh_cube_several.obj");
|
||||||
}
|
}
|
||||||
|
|
||||||
// Construct any mesh, this time, we will construct a simple icosahedron
|
|
||||||
let mesh = MeshBuilder::new().icosahedron().build().unwrap();
|
|
||||||
|
|
||||||
// Compute the extreme coordinates which defines the axis aligned bounding box..
|
|
||||||
let (_min_coordinates, _max_coordinates) = mesh.extreme_coordinates();
|
|
||||||
|
|
||||||
// .. or construct an actual mesh representing the axis aligned bounding box
|
|
||||||
let _aabb = mesh.axis_aligned_bounding_box();
|
|
||||||
|
|
||||||
let xform = points_to_xform(
|
|
||||||
Point3::new(0.5, 0.5, 0.0),
|
|
||||||
Point3::new(-0.5, 0.5, 0.0),
|
|
||||||
Point3::new(2.0, -4.0, 0.0),
|
|
||||||
);
|
|
||||||
println!("points_to_xform:");
|
|
||||||
print_matrix(&xform);
|
|
||||||
|
|
||||||
// Export the bounding box to an obj file
|
|
||||||
std::fs::write("foo.obj", mesh.parse_as_obj()).unwrap();
|
|
||||||
|
|
||||||
let r = Rule::Recurse(cube_thing_rule);
|
let r = Rule::Recurse(cube_thing_rule);
|
||||||
|
|
||||||
let max_iters = 2;
|
let max_iters = 2;
|
||||||
println!("Running rules...");
|
println!("Running rules...");
|
||||||
let (cubemesh, nodes) = rule_to_mesh(&r, vec![], max_iters);
|
let (cubemesh_, nodes) = rule_to_mesh(&r, max_iters);
|
||||||
|
let cubemesh = cubemesh_.to_trimesh().unwrap();
|
||||||
println!("Collected {} nodes, produced {} faces, {} vertices",
|
println!("Collected {} nodes, produced {} faces, {} vertices",
|
||||||
nodes, cubemesh.no_faces(), cubemesh.no_vertices());
|
nodes, cubemesh.no_faces(), cubemesh.no_vertices());
|
||||||
println!("Writing OBJ...");
|
println!("Writing OBJ...");
|
||||||
std::fs::write("cubemesh.obj", cubemesh.parse_as_obj()).unwrap();
|
std::fs::write("cubemesh.obj", cubemesh.parse_as_obj()).unwrap();
|
||||||
|
|
||||||
|
/*
|
||||||
let r2 = Rule::Recurse(curve_horn_start);
|
let r2 = Rule::Recurse(curve_horn_start);
|
||||||
println!("Running rules...");
|
println!("Running rules...");
|
||||||
// Seed:
|
// Seed:
|
||||||
let seed = {
|
let seed = {
|
||||||
let indices: Vec<u32> = vec![0, 1, 2, 2, 1, 3];
|
let indices: Vec<u32> = vec![0, 1, 2, 2, 1, 3];
|
||||||
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0];
|
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0];
|
||||||
let mut s = MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
|
let mut s = tm::MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
|
||||||
s.apply_transformation(Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
|
s.apply_transformation(tm::Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
|
||||||
s
|
s
|
||||||
};
|
};
|
||||||
|
*/
|
||||||
// TEMP (while I figure shit out)
|
// TEMP (while I figure shit out)
|
||||||
struct VID { val: usize }
|
|
||||||
fn vertex_id_to_usize(v: VertexID) -> usize {
|
|
||||||
let v: VID = unsafe { std::mem::transmute(v) };
|
|
||||||
v.val
|
|
||||||
}
|
|
||||||
println!("DEBUG-------------------------------");
|
|
||||||
let mb = MeshBound::new(&seed).unwrap();
|
|
||||||
let pos = seed.positions_buffer();
|
|
||||||
for bound_edge in mb {
|
|
||||||
let (v1, v2) = seed.edge_vertices(bound_edge);
|
|
||||||
let v1idx = vertex_id_to_usize(v1);
|
|
||||||
let v2idx = vertex_id_to_usize(v2);
|
|
||||||
|
|
||||||
println!("Boundary edge {}, vertices = {},{}, {:?}",
|
|
||||||
bound_edge, v1, v2, seed.edge_positions(bound_edge));
|
|
||||||
println!("v1idx={} pos[...]=[{},{},{}], v2idx={}, pos[...]=[{},{},{}]",
|
|
||||||
v1idx, pos[3*v1idx], pos[3*v1idx+1], pos[3*v1idx+2],
|
|
||||||
v2idx, pos[3*v2idx], pos[3*v2idx+1], pos[3*v2idx+2]);
|
|
||||||
}
|
|
||||||
println!("DEBUG-------------------------------");
|
println!("DEBUG-------------------------------");
|
||||||
|
|
||||||
let (mut mesh, nodes) = rule_to_mesh(&r2, vec![seed], 75);
|
|
||||||
println!("Collected {} nodes, produced {} faces, {} vertices",
|
|
||||||
nodes, mesh.no_faces(), mesh.no_vertices());
|
|
||||||
println!("Trying to merge...");
|
|
||||||
match mesh.merge_overlapping_primitives() {
|
|
||||||
Err(e) => {
|
|
||||||
println!("Couldn't merge overlapping primitives!");
|
|
||||||
println!("Error: {:?}", e);
|
|
||||||
}
|
|
||||||
Ok(_) => {
|
|
||||||
println!("Merged to {} faces, {} vertices",
|
|
||||||
mesh.no_faces(), mesh.no_vertices());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
println!("Writing OBJ...");
|
|
||||||
std::fs::write("curve_horn_thing.obj", mesh.parse_as_obj()).unwrap();
|
|
||||||
// TODO: Can I make the seed geometry part of the rule itself?
|
|
||||||
}
|
}
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user