Convert ramhorn example
This commit is contained in:
parent
1df037fc9d
commit
9c941aac99
555
src/examples.rs
555
src/examples.rs
@ -2,7 +2,7 @@ use std::rc::Rc;
|
||||
use nalgebra::*;
|
||||
//pub mod examples;
|
||||
|
||||
use crate::openmesh::{OpenMesh};
|
||||
use crate::openmesh::{OpenMesh, Tag};
|
||||
use crate::xform::{Transform, vertex};
|
||||
use crate::rule::{Rule, RuleFn, RuleEval, Child};
|
||||
use crate::prim;
|
||||
@ -12,7 +12,7 @@ fn cube_thing() -> Rule {
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
|
||||
//let x = &Vector3::x_axis();
|
||||
let y = &Vector3::y_axis();
|
||||
let z = &Vector3::z_axis();
|
||||
|
||||
@ -27,13 +27,9 @@ fn cube_thing() -> Rule {
|
||||
id.rotate(z, -qtr),
|
||||
];
|
||||
|
||||
let gen_xform = |rot: &Transform| -> Transform {
|
||||
rot.scale(0.5).translate(6.0, 0.0, 0.0)
|
||||
};
|
||||
|
||||
let rec = move |self_: Rc<Rule>| -> RuleEval {
|
||||
|
||||
let xforms = turns.iter().map(gen_xform);
|
||||
let xforms = turns.iter().map(|xf| xf.scale(0.5).translate(6.0, 0.0, 0.0));
|
||||
RuleEval {
|
||||
geom: prim::cube(),
|
||||
final_geom: prim::empty_mesh(),
|
||||
@ -44,18 +40,241 @@ fn cube_thing() -> Rule {
|
||||
}).collect(),
|
||||
}
|
||||
};
|
||||
// I can't really do *mutual* recursion with the above, can I? I'd
|
||||
// need actual functions for that.
|
||||
|
||||
// "Constants" outside the closure only work the way I think they
|
||||
// should work if:
|
||||
// - they're actually static
|
||||
// - they implement Copy
|
||||
// - the closure can move them
|
||||
|
||||
Rule { eval: Box::new(rec) }
|
||||
}
|
||||
|
||||
// Meant to be a copy of twist_from_gen from Python & automata_scratch
|
||||
fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
// TODO: Clean this code up. It was a very naive conversion from
|
||||
// the non-closure version.
|
||||
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.7);
|
||||
let seed = {
|
||||
let s = vec![vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5)];
|
||||
util::subdivide_cycle(&xf.transform(&s), subdiv)
|
||||
};
|
||||
let n = seed.len();
|
||||
let dx0: f32 = 1.5;
|
||||
let dy: f32 = 0.1/f;
|
||||
let ang: f32 = 0.05/f;
|
||||
let count: usize = 4;
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
let y = Vector3::y_axis();
|
||||
|
||||
let incr_inner = Transform::new().translate(-dx0, 0.0, 0.0).rotate(&y, ang).translate(dx0, dy, 0.0);
|
||||
let incr_outer = Transform::new().translate(-dx0*2.0, 0.0, 0.0).rotate(&y, ang/2.0).translate(dx0*2.0, dy, 0.0);
|
||||
|
||||
let seed2 = seed.clone();
|
||||
// TODO: Why do I need the above?
|
||||
let recur = move |incr: Transform| -> RuleFn {
|
||||
|
||||
let seed_next = incr.transform(&seed2);
|
||||
|
||||
let geom: OpenMesh = util::zigzag_to_parent(seed_next.clone(), n);
|
||||
// TODO: Cleanliness fix - why not just make these return meshes?
|
||||
let (vc, faces) = util::connect_convex(&seed_next, true);
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![vc],
|
||||
faces: faces,
|
||||
};
|
||||
|
||||
let c = move |self_: Rc<Rule>| -> RuleEval {
|
||||
// TODO: Why clone geometry here if I just have to clone it
|
||||
// later on? Seems like Rc may be much easier (if I can't
|
||||
// borrow directly - which is probably the case).
|
||||
RuleEval {
|
||||
geom: geom.clone(),
|
||||
final_geom: final_geom.clone(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: self_.clone(),
|
||||
xf: incr,
|
||||
vmap: (0..n).collect(),
|
||||
},
|
||||
],
|
||||
}
|
||||
};
|
||||
Box::new(c)
|
||||
};
|
||||
// TODO: Can a macro do anything to clean up some of the
|
||||
// repetition with HOFs & closures?
|
||||
|
||||
let start = move |_| -> RuleEval {
|
||||
|
||||
let child = |incr, dx, i, ang0, div| -> (OpenMesh, Child) {
|
||||
let xform = Transform::new().
|
||||
rotate(&y, ang0 + (qtr / div * (i as f32))).
|
||||
translate(dx, 0.0, 0.0);
|
||||
|
||||
let c = Child {
|
||||
rule: Rc::new(Rule { eval: (recur.clone())(incr) }),
|
||||
// TODO: Cleanliness fix - can macros clean up above?
|
||||
xf: xform,
|
||||
vmap: (0..(n+1)).collect(),
|
||||
// N.B. n+1, not n. the +1 is for the centroid below.
|
||||
};
|
||||
let mut vs = xform.transform(&seed);
|
||||
// and in the process, generate faces for these seeds:
|
||||
let (centroid, f) = util::connect_convex(&vs, false);
|
||||
vs.push(centroid);
|
||||
(OpenMesh { verts: vs, faces: f }, c)
|
||||
};
|
||||
|
||||
// Generate 'count' children, shifted/rotated differently:
|
||||
let inner = (0..count).map(|i| child(incr_inner, dx0, i, 0.0, 1.0));
|
||||
let outer = (0..count).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
|
||||
|
||||
RuleEval::from_pairs(inner.chain(outer), prim::empty_mesh())
|
||||
};
|
||||
|
||||
Rule { eval: Box::new(start) }
|
||||
}
|
||||
|
||||
fn ramhorn() -> Rule {
|
||||
|
||||
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
|
||||
let incr: Transform = Transform::new().
|
||||
translate(0.0, 0.0, 0.8).
|
||||
rotate(&v, 0.3).
|
||||
scale(0.9);
|
||||
|
||||
let recur = move |self_: Rc<Rule>| -> RuleEval {
|
||||
let seed = vec![
|
||||
vertex(-0.5, -0.5, 1.0),
|
||||
vertex(-0.5, 0.5, 1.0),
|
||||
vertex( 0.5, 0.5, 1.0),
|
||||
vertex( 0.5, -0.5, 1.0),
|
||||
];
|
||||
let next = incr.transform(&seed);
|
||||
let geom = OpenMesh {
|
||||
verts: next,
|
||||
faces: vec![
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
],
|
||||
};
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
RuleEval {
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: self_.clone(),
|
||||
xf: incr,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
};
|
||||
|
||||
let opening_xform = |i| {
|
||||
let r = std::f32::consts::FRAC_PI_2 * i;
|
||||
Transform::new().
|
||||
rotate(&nalgebra::Vector3::z_axis(), r).
|
||||
translate(0.25, 0.25, 1.0).
|
||||
scale(0.5).
|
||||
translate(0.0, 0.0, -1.0)
|
||||
};
|
||||
|
||||
let start = move |_| -> RuleEval {
|
||||
|
||||
//let ofn = opening_xform.clone();
|
||||
|
||||
RuleEval {
|
||||
geom: OpenMesh {
|
||||
verts: vec![
|
||||
// 'Top' vertices:
|
||||
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
|
||||
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
|
||||
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
|
||||
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
|
||||
// Top edge midpoints:
|
||||
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
|
||||
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
|
||||
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
|
||||
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
|
||||
// Top middle:
|
||||
vertex( 0.0, 0.0, 1.0), // 8
|
||||
// 'Bottom' vertices:
|
||||
vertex(-0.5, -0.5, 0.0), // 9
|
||||
vertex(-0.5, 0.5, 0.0), // 10
|
||||
vertex( 0.5, 0.5, 0.0), // 11
|
||||
vertex( 0.5, -0.5, 0.0), // 12
|
||||
],
|
||||
faces: vec![
|
||||
// bottom face:
|
||||
Tag::Body(9), Tag::Body(10), Tag::Body(11),
|
||||
Tag::Body(9), Tag::Body(11), Tag::Body(12),
|
||||
// two faces straddling edge from vertex 0:
|
||||
Tag::Body(9), Tag::Body(0), Tag::Body(4),
|
||||
Tag::Body(9), Tag::Body(7), Tag::Body(0),
|
||||
// two faces straddling edge from vertex 1:
|
||||
Tag::Body(10), Tag::Body(1), Tag::Body(5),
|
||||
Tag::Body(10), Tag::Body(4), Tag::Body(1),
|
||||
// two faces straddling edge from vertex 2:
|
||||
Tag::Body(11), Tag::Body(2), Tag::Body(6),
|
||||
Tag::Body(11), Tag::Body(5), Tag::Body(2),
|
||||
// two faces straddling edge from vertex 3:
|
||||
Tag::Body(12), Tag::Body(3), Tag::Body(7),
|
||||
Tag::Body(12), Tag::Body(6), Tag::Body(3),
|
||||
// four faces from edge (0,1), (1,2), (2,3), (3,0):
|
||||
Tag::Body(9), Tag::Body(4), Tag::Body(10),
|
||||
Tag::Body(10), Tag::Body(5), Tag::Body(11),
|
||||
Tag::Body(11), Tag::Body(6), Tag::Body(12),
|
||||
Tag::Body(12), Tag::Body(7), Tag::Body(9),
|
||||
],
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rc::new(Rule { eval: Box::new(recur.clone()) }),
|
||||
xf: opening_xform(0.0),
|
||||
vmap: vec![5,2,6,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rc::new(Rule { eval: Box::new(recur.clone()) }),
|
||||
xf: opening_xform(1.0),
|
||||
vmap: vec![4,1,5,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rc::new(Rule { eval: Box::new(recur.clone()) }),
|
||||
xf: opening_xform(2.0),
|
||||
vmap: vec![7,0,4,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rc::new(Rule { eval: Box::new(recur.clone()) }),
|
||||
xf: opening_xform(3.0),
|
||||
vmap: vec![6,3,7,8],
|
||||
},
|
||||
// TODO: These vertex mappings appear to be right.
|
||||
// Explain *why* they are right.
|
||||
// TODO: Factor out the repetition here.
|
||||
// TODO: 4 Box::new calls in a row with identical
|
||||
// params... why not just Rc?
|
||||
],
|
||||
}
|
||||
};
|
||||
|
||||
Rule { eval: Box::new(start) }
|
||||
}
|
||||
|
||||
/*
|
||||
#[derive(Copy, Clone)]
|
||||
struct CurveHorn {
|
||||
@ -174,286 +393,8 @@ impl CurveHorn {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct CubeThing {
|
||||
}
|
||||
|
||||
impl CubeThing {
|
||||
|
||||
fn init() -> Rule {
|
||||
let c = CubeThing {};
|
||||
Rule { eval: Box::new(|| c.rec()) }
|
||||
}
|
||||
|
||||
fn rec(&self) -> RuleEval {
|
||||
|
||||
let mesh = prim::cube();
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
|
||||
let y = &Vector3::y_axis();
|
||||
let z = &Vector3::z_axis();
|
||||
|
||||
// Each element of this turns to a branch for the recursion:
|
||||
let turns: Vec<Mat4> = vec![
|
||||
geometry::Transform3::identity().to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||
];
|
||||
|
||||
let gen_rulestep = |rot: &Mat4| -> Child {
|
||||
let m: Mat4 = rot *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.rec()) },
|
||||
xf: m,
|
||||
vmap: vec![],
|
||||
}
|
||||
};
|
||||
|
||||
RuleEval {
|
||||
geom: mesh,
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: turns.iter().map(gen_rulestep).collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct RamHorn {
|
||||
}
|
||||
|
||||
impl RamHorn {
|
||||
|
||||
fn init() -> Rule {
|
||||
let r = RamHorn{};
|
||||
Rule { eval: Box::new(|| r.start()) }
|
||||
}
|
||||
|
||||
// Conversion from Python & automata_scratch
|
||||
fn start(&self) -> RuleEval {
|
||||
let opening_xform = |i| {
|
||||
let r = std::f32::consts::FRAC_PI_2 * i;
|
||||
((geometry::Rotation3::from_axis_angle(
|
||||
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
|
||||
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
||||
};
|
||||
RuleEval {
|
||||
geom: OpenMesh {
|
||||
verts: vec![
|
||||
// 'Top' vertices:
|
||||
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
|
||||
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
|
||||
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
|
||||
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
|
||||
// Top edge midpoints:
|
||||
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
|
||||
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
|
||||
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
|
||||
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
|
||||
// Top middle:
|
||||
vertex( 0.0, 0.0, 1.0), // 8
|
||||
// 'Bottom' vertices:
|
||||
vertex(-0.5, -0.5, 0.0), // 9
|
||||
vertex(-0.5, 0.5, 0.0), // 10
|
||||
vertex( 0.5, 0.5, 0.0), // 11
|
||||
vertex( 0.5, -0.5, 0.0), // 12
|
||||
],
|
||||
faces: vec![
|
||||
// bottom face:
|
||||
Tag::Body(9), Tag::Body(10), Tag::Body(11),
|
||||
Tag::Body(9), Tag::Body(11), Tag::Body(12),
|
||||
// two faces straddling edge from vertex 0:
|
||||
Tag::Body(9), Tag::Body(0), Tag::Body(4),
|
||||
Tag::Body(9), Tag::Body(7), Tag::Body(0),
|
||||
// two faces straddling edge from vertex 1:
|
||||
Tag::Body(10), Tag::Body(1), Tag::Body(5),
|
||||
Tag::Body(10), Tag::Body(4), Tag::Body(1),
|
||||
// two faces straddling edge from vertex 2:
|
||||
Tag::Body(11), Tag::Body(2), Tag::Body(6),
|
||||
Tag::Body(11), Tag::Body(5), Tag::Body(2),
|
||||
// two faces straddling edge from vertex 3:
|
||||
Tag::Body(12), Tag::Body(3), Tag::Body(7),
|
||||
Tag::Body(12), Tag::Body(6), Tag::Body(3),
|
||||
// four faces from edge (0,1), (1,2), (2,3), (3,0):
|
||||
Tag::Body(9), Tag::Body(4), Tag::Body(10),
|
||||
Tag::Body(10), Tag::Body(5), Tag::Body(11),
|
||||
Tag::Body(11), Tag::Body(6), Tag::Body(12),
|
||||
Tag::Body(12), Tag::Body(7), Tag::Body(9),
|
||||
],
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
||||
xf: opening_xform(0.0),
|
||||
vmap: vec![5,2,6,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
||||
xf: opening_xform(1.0),
|
||||
vmap: vec![4,1,5,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
||||
xf: opening_xform(2.0),
|
||||
vmap: vec![7,0,4,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
||||
xf: opening_xform(3.0),
|
||||
vmap: vec![6,3,7,8],
|
||||
},
|
||||
// TODO: These vertex mappings appear to be right.
|
||||
// Explain *why* they are right.
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
fn ram_horn(&self) -> RuleEval {
|
||||
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
|
||||
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.9);
|
||||
let seed = vec![
|
||||
vertex(-0.5, -0.5, 1.0),
|
||||
vertex(-0.5, 0.5, 1.0),
|
||||
vertex( 0.5, 0.5, 1.0),
|
||||
vertex( 0.5, -0.5, 1.0),
|
||||
];
|
||||
let next = transform(&seed, &incr);
|
||||
let geom = OpenMesh {
|
||||
verts: next,
|
||||
faces: vec![
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
],
|
||||
};
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
RuleEval {
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule { eval: Box::new(|| self.ram_horn()) },
|
||||
xf: incr,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// Meant to be a copy of twist_from_gen from Python & automata_scratch
|
||||
fn twist(f: f32, subdiv: usize) -> Rule {
|
||||
// TODO: Clean this code up. It was a very naive conversion from
|
||||
// the non-closure version.
|
||||
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.7);
|
||||
let seed = {
|
||||
let s = vec![vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5)];
|
||||
util::subdivide_cycle(&xf.transform(&s), subdiv)
|
||||
};
|
||||
let n = seed.len();
|
||||
let dx0: f32 = 1.5;
|
||||
let dy: f32 = 0.1/f;
|
||||
let ang: f32 = 0.05/f;
|
||||
let count: usize = 4;
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
let y = Vector3::y_axis();
|
||||
|
||||
let incr_inner = Transform::new().translate(-dx0, 0.0, 0.0).rotate(&y, ang).translate(dx0, dy, 0.0);
|
||||
let incr_outer = Transform::new().translate(-dx0*2.0, 0.0, 0.0).rotate(&y, ang/2.0).translate(dx0*2.0, dy, 0.0);
|
||||
|
||||
let seed2 = seed.clone();
|
||||
// TODO: Why do I need the above?
|
||||
let recur = move |incr: Transform| -> RuleFn {
|
||||
|
||||
let seed_next = incr.transform(&seed2);
|
||||
|
||||
let geom: OpenMesh = util::zigzag_to_parent(seed_next.clone(), n);
|
||||
// TODO: Cleanliness fix - why not just make these return meshes?
|
||||
let (vc, faces) = util::connect_convex(&seed_next, true);
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![vc],
|
||||
faces: faces,
|
||||
};
|
||||
|
||||
let c = move |self_: Rc<Rule>| -> RuleEval {
|
||||
// TODO: Why clone geometry here if I just have to clone it
|
||||
// later on? Seems like Rc may be much easier (if I can't
|
||||
// borrow directly - which is probably the case).
|
||||
RuleEval {
|
||||
geom: geom.clone(),
|
||||
final_geom: final_geom.clone(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: self_.clone(),
|
||||
xf: incr,
|
||||
vmap: (0..n).collect(),
|
||||
},
|
||||
],
|
||||
}
|
||||
};
|
||||
Box::new(c)
|
||||
};
|
||||
// TODO: Can a macro do anything to clean up some of the
|
||||
// repetition with HOFs & closures?
|
||||
|
||||
let start = move |_| -> RuleEval {
|
||||
|
||||
let child = |incr, dx, i, ang0, div| -> (OpenMesh, Child) {
|
||||
let xform = Transform::new().
|
||||
rotate(&y, ang0 + (qtr / div * (i as f32))).
|
||||
translate(dx, 0.0, 0.0);
|
||||
|
||||
let c = Child {
|
||||
rule: Rc::new(Rule { eval: (recur.clone())(incr) }),
|
||||
// TODO: Cleanliness fix - can macros clean up above?
|
||||
xf: xform,
|
||||
vmap: (0..(n+1)).collect(),
|
||||
// N.B. n+1, not n. the +1 is for the centroid below.
|
||||
};
|
||||
let mut vs = xform.transform(&seed);
|
||||
// and in the process, generate faces for these seeds:
|
||||
let (centroid, f) = util::connect_convex(&vs, false);
|
||||
vs.push(centroid);
|
||||
(OpenMesh { verts: vs, faces: f }, c)
|
||||
};
|
||||
|
||||
// Generate 'count' children, shifted/rotated differently:
|
||||
let inner = (0..count).map(|i| child(incr_inner, dx0, i, 0.0, 1.0));
|
||||
let outer = (0..count).map(|i| child(incr_outer, dx0*2.0, i, qtr/2.0, 2.0));
|
||||
|
||||
RuleEval::from_pairs(inner.chain(outer), prim::empty_mesh())
|
||||
};
|
||||
|
||||
Rule { eval: Box::new(start) }
|
||||
}
|
||||
|
||||
pub fn main() {
|
||||
|
||||
/*
|
||||
@ -521,31 +462,5 @@ pub fn main() {
|
||||
|
||||
run_test_iter(&Rc::new(cube_thing()), 3, "cube_thing3");
|
||||
run_test_iter(&Rc::new(twist(1.0, 2)), 200, "twist");
|
||||
|
||||
if false
|
||||
{
|
||||
let a = vec![1,2,3];
|
||||
|
||||
let c = move || {
|
||||
println!("c: a={:?}", a);
|
||||
};
|
||||
|
||||
let r: Rc<dyn Fn()> = Rc::new(c);
|
||||
// But this will fail at the function calls below:
|
||||
//let r: Rc<dyn FnOnce()> = Rc::new(c);
|
||||
let r2 = r.clone();
|
||||
|
||||
println!("strong_count={}", Rc::strong_count(&r2));
|
||||
println!("weak_count={}", Rc::weak_count(&r2));
|
||||
|
||||
r2();
|
||||
r();
|
||||
|
||||
let a2 = vec![1,2,3];
|
||||
let c2 = move || {
|
||||
println!("c2: a2={:?}", a2);
|
||||
};
|
||||
let b: Box<dyn FnOnce()> = Box::new(c2);
|
||||
b();
|
||||
}
|
||||
run_test_iter(&Rc::new(ramhorn()), 100, "ram_horn3");
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user