Add (non-building) attempt at using closures again

This commit is contained in:
hodapp 2020-03-10 21:25:50 -04:00
parent 7714f743d5
commit 4df6b8442c
2 changed files with 56 additions and 48 deletions

View File

@ -6,6 +6,12 @@ use crate::rule::{Rule, RuleEval, Child};
use crate::prim; use crate::prim;
use crate::util; use crate::util;
fn recurRule<A: Fn () -> RuleEval>(f: A) -> Rule {
Rule {
eval: Box::new(f),
}
}
struct CurveHorn { struct CurveHorn {
seed: Vec<Vertex>, seed: Vec<Vertex>,
id_xform: Mat4, id_xform: Mat4,
@ -15,7 +21,7 @@ struct CurveHorn {
impl CurveHorn { impl CurveHorn {
fn init() -> (CurveHorn, Rule<CurveHorn>) { fn init() -> Rule {
let y = &Vector3::y_axis(); let y = &Vector3::y_axis();
let c = CurveHorn { let c = CurveHorn {
seed: vec![ seed: vec![
@ -32,10 +38,10 @@ impl CurveHorn {
Matrix4::new_scaling(0.95) * Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(), geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
}; };
(c, Rule { eval: Self::start }) recurRule(|| c.start())
} }
fn start(&self) -> RuleEval<Self> { fn start(&self) -> RuleEval {
RuleEval { RuleEval {
geom: OpenMesh { geom: OpenMesh {
verts: self.seed.clone(), verts: self.seed.clone(),
@ -44,12 +50,12 @@ impl CurveHorn {
final_geom: prim::empty_mesh(), final_geom: prim::empty_mesh(),
children: vec![ children: vec![
Child { Child {
rule: Rule { eval: Self::recur }, rule: recurRule(|| self.recur()),
xf: self.id_xform, xf: self.id_xform,
vmap: vec![0,1,2,3], vmap: vec![0,1,2,3],
}, },
Child { Child {
rule: Rule { eval: Self::recur }, rule: recurRule(|| self.recur()),
xf: self.flip180, xf: self.flip180,
vmap: vec![3,2,1,0], vmap: vec![3,2,1,0],
}, },
@ -57,7 +63,7 @@ impl CurveHorn {
} }
} }
fn recur(&self) -> RuleEval<Self> { fn recur(&self) -> RuleEval {
let verts = self.seed.clone(); let verts = self.seed.clone();
let next_verts: Vec<Vertex> = transform(&verts, &self.incr); let next_verts: Vec<Vertex> = transform(&verts, &self.incr);
@ -95,7 +101,7 @@ impl CurveHorn {
final_geom: final_geom, final_geom: final_geom,
children: vec![ children: vec![
Child { Child {
rule: Rule { eval: Self::recur }, rule: recurRule(|| self.recur()),
xf: self.incr, xf: self.incr,
vmap: vec![0,1,2,3], vmap: vec![0,1,2,3],
}, },
@ -109,11 +115,12 @@ struct CubeThing {
impl CubeThing { impl CubeThing {
fn init() -> (CubeThing, Rule<CubeThing>) { fn init() -> Rule {
(CubeThing {}, Rule { eval: Self::rec }) let c = CubeThing {};
recurRule(|| c.rec())
} }
fn rec(&self) -> RuleEval<Self> { fn rec(&self) -> RuleEval {
let mesh = prim::cube(); let mesh = prim::cube();
@ -133,12 +140,12 @@ impl CubeThing {
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(), geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
]; ];
let gen_rulestep = |rot: &Mat4| -> Child<Self> { let gen_rulestep = |rot: &Mat4| -> Child {
let m: Mat4 = rot * let m: Mat4 = rot *
Matrix4::new_scaling(0.5) * Matrix4::new_scaling(0.5) *
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous(); geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
Child { Child {
rule: Rule { eval: Self::rec }, rule: recurRule(|| self.rec()),
xf: m, xf: m,
vmap: vec![], vmap: vec![],
} }
@ -157,12 +164,13 @@ struct RamHorn {
impl RamHorn { impl RamHorn {
fn init() -> (RamHorn, Rule<RamHorn>) { fn init() -> Rule {
(RamHorn{}, Rule { eval: Self::start }) let r = RamHorn{};
recurRule(|| r.start())
} }
// Conversion from Python & automata_scratch // Conversion from Python & automata_scratch
fn start(&self) -> RuleEval<Self> { fn start(&self) -> RuleEval {
let opening_xform = |i| { let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i; let r = std::f32::consts::FRAC_PI_2 * i;
((geometry::Rotation3::from_axis_angle( ((geometry::Rotation3::from_axis_angle(
@ -218,22 +226,22 @@ impl RamHorn {
final_geom: prim::empty_mesh(), final_geom: prim::empty_mesh(),
children: vec![ children: vec![
Child { Child {
rule: Rule { eval: Self::ram_horn }, rule: recurRule(|| self.ram_horn()),
xf: opening_xform(0.0), xf: opening_xform(0.0),
vmap: vec![5,2,6,8], vmap: vec![5,2,6,8],
}, },
Child { Child {
rule: Rule { eval: Self::ram_horn }, rule: recurRule(|| self.ram_horn()),
xf: opening_xform(1.0), xf: opening_xform(1.0),
vmap: vec![4,1,5,8], vmap: vec![4,1,5,8],
}, },
Child { Child {
rule: Rule { eval: Self::ram_horn }, rule: recurRule(|| self.ram_horn()),
xf: opening_xform(2.0), xf: opening_xform(2.0),
vmap: vec![7,0,4,8], vmap: vec![7,0,4,8],
}, },
Child { Child {
rule: Rule { eval: Self::ram_horn }, rule: recurRule(|| self.ram_horn()),
xf: opening_xform(3.0), xf: opening_xform(3.0),
vmap: vec![6,3,7,8], vmap: vec![6,3,7,8],
}, },
@ -243,7 +251,7 @@ impl RamHorn {
} }
} }
fn ram_horn(&self) -> RuleEval<Self> { fn ram_horn(&self) -> RuleEval {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0)); let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() * let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() * geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
@ -280,7 +288,7 @@ impl RamHorn {
final_geom: final_geom, final_geom: final_geom,
children: vec![ children: vec![
Child { Child {
rule: Rule { eval: Self::ram_horn }, rule: recurRule(|| self.ram_horn()),
xf: incr, xf: incr,
vmap: vec![0,1,2,3], vmap: vec![0,1,2,3],
}, },
@ -301,7 +309,7 @@ struct Twist {
impl Twist { impl Twist {
pub fn init(f: f32, subdiv: usize) -> (Twist, Rule<Twist>) { pub fn init(f: f32, subdiv: usize) -> Rule {
let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous(); let xf = geometry::Rotation3::from_axis_angle(&Vector3::x_axis(), -0.7).to_homogeneous();
let seed = transform(&vec![ let seed = transform(&vec![
vertex(-0.5, 0.0, -0.5), vertex(-0.5, 0.0, -0.5),
@ -319,11 +327,11 @@ impl Twist {
seed_sub: seed_sub, seed_sub: seed_sub,
subdiv: subdiv, subdiv: subdiv,
}; };
(t, Rule { eval: Self::start }) recurRule(|| t.start())
} }
// Meant to be a copy of twist_from_gen from Python & automata_scratch // Meant to be a copy of twist_from_gen from Python & automata_scratch
pub fn start(&self) -> RuleEval<Twist> { pub fn start(&self) -> RuleEval {
let n = self.seed_sub.len(); let n = self.seed_sub.len();
@ -337,10 +345,10 @@ impl Twist {
// First generate 'count' children, each one shifted/rotated // First generate 'count' children, each one shifted/rotated
// differently: // differently:
let children: Vec<Child<Twist>> = (0..self.count).map(|i| { let children: Vec<Child> = (0..self.count).map(|i| {
let xf = xform(i); let xf = xform(i);
Child { Child {
rule: Rule { eval: Self::recur }, rule: recurRule(|| self.recur()),
xf: xf, xf: xf,
vmap: ((n+1)*i..(n+1)*(i+self.count)).collect(), // N.B. vmap: ((n+1)*i..(n+1)*(i+self.count)).collect(), // N.B.
// note n+1, not n. the +1 is for the centroid below // note n+1, not n. the +1 is for the centroid below
@ -364,7 +372,7 @@ impl Twist {
} }
} }
pub fn recur(&self) -> RuleEval<Twist> { pub fn recur(&self) -> RuleEval {
let y = &Vector3::y_axis(); let y = &Vector3::y_axis();
let incr = geometry::Translation3::new(-self.dx0, 0.0, 0.0).to_homogeneous() * let incr = geometry::Translation3::new(-self.dx0, 0.0, 0.0).to_homogeneous() *
geometry::Rotation3::from_axis_angle(y, self.ang).to_homogeneous() * geometry::Rotation3::from_axis_angle(y, self.ang).to_homogeneous() *
@ -384,7 +392,7 @@ impl Twist {
final_geom: OpenMesh { verts: vec![vc], faces }, final_geom: OpenMesh { verts: vec![vc], faces },
children: vec![ children: vec![
Child { Child {
rule: Rule { eval: Self::recur }, rule: recurRule(|| self.recur()),
xf: incr, xf: incr,
vmap: (0..n).collect(), vmap: (0..n).collect(),
}, },
@ -407,18 +415,18 @@ pub fn main() {
println!("vs2={:?}", vs2); println!("vs2={:?}", vs2);
} }
fn run_test<A>((a, r): (A, Rule<A>), iters: u32, name: &str) { fn run_test(r: Rule, iters: u32, name: &str) {
println!("Running {}...", name); println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh(&a, iters); let (mesh, nodes) = r.to_mesh(iters);
println!("Evaluated {} rules", nodes); println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name); let fname = format!("{}.stl", name);
println!("Writing {}...", fname); println!("Writing {}...", fname);
mesh.write_stl_file(&fname).unwrap(); mesh.write_stl_file(&fname).unwrap();
} }
fn run_test_iter<A>((a, r): (A, Rule<A>), iters: usize, name: &str) { fn run_test_iter(r: Rule, iters: usize, name: &str) {
println!("Running {}...", name); println!("Running {}...", name);
let (mesh, nodes) = r.to_mesh_iter(&a, iters); let (mesh, nodes) = r.to_mesh_iter(iters);
println!("Evaluated {} rules", nodes); println!("Evaluated {} rules", nodes);
let fname = format!("{}.stl", name); let fname = format!("{}.stl", name);
println!("Writing {}...", fname); println!("Writing {}...", fname);

View File

@ -6,8 +6,8 @@ use crate::openmesh::{OpenMesh, Tag, Mat4};
/// - produces geometry when it is evaluated /// - produces geometry when it is evaluated
/// - tells what other rules to invoke, and what to do with their /// - tells what other rules to invoke, and what to do with their
/// geometry /// geometry
pub struct Rule<A> { pub struct Rule {
pub eval: fn (&A) -> RuleEval<A>, pub eval: Box<dyn Fn () -> RuleEval>,
} }
// TODO: It may be possible to have just a 'static' rule that requires // TODO: It may be possible to have just a 'static' rule that requires
// no function call. // no function call.
@ -24,7 +24,7 @@ pub struct Rule<A> {
/// - if recursion continues, the rules of `children` are evaluated, /// - if recursion continues, the rules of `children` are evaluated,
/// and the resultant geometry is transformed and then connected with /// and the resultant geometry is transformed and then connected with
/// `geom`. /// `geom`.
pub struct RuleEval<A> { pub struct RuleEval {
/// The geometry generated at just this iteration /// The geometry generated at just this iteration
pub geom: OpenMesh, pub geom: OpenMesh,
@ -39,16 +39,16 @@ pub struct RuleEval<A> {
/// The child invocations (used if recursion continues). The /// The child invocations (used if recursion continues). The
/// 'parent' mesh, from the perspective of all geometry produced /// 'parent' mesh, from the perspective of all geometry produced
/// by `children`, is `geom`. /// by `children`, is `geom`.
pub children: Vec<Child<A>>, pub children: Vec<Child>,
} }
/// `Child` evaluations, pairing another `Rule` with the /// `Child` evaluations, pairing another `Rule` with the
/// transformations and parent vertex mappings that should be applied /// transformations and parent vertex mappings that should be applied
/// to it. /// to it.
pub struct Child<A> { pub struct Child {
/// Rule to evaluate to produce geometry /// Rule to evaluate to produce geometry
pub rule: Rule<A>, pub rule: Rule,
/// The transform to apply to all geometry produced by `rule` /// The transform to apply to all geometry produced by `rule`
/// (including its own `geom` and `final_geom` if needed, as well /// (including its own `geom` and `final_geom` if needed, as well
@ -63,7 +63,7 @@ pub struct Child<A> {
pub vmap: Vec<usize>, pub vmap: Vec<usize>,
} }
impl<A> Rule<A> { impl Rule {
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I // TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
// could end up having a lot of identical geometry that need not be // could end up having a lot of identical geometry that need not be
@ -76,11 +76,11 @@ impl<A> Rule<A> {
/// Convert this `Rule` to mesh data, recursively (depth first). /// Convert this `Rule` to mesh data, recursively (depth first).
/// `iters_left` sets the maximum recursion depth. This returns /// `iters_left` sets the maximum recursion depth. This returns
/// (geometry, number of rule evaluations). /// (geometry, number of rule evaluations).
pub fn to_mesh(&self, arg: &A, iters_left: u32) -> (OpenMesh, usize) { pub fn to_mesh(&self, iters_left: u32) -> (OpenMesh, usize) {
let mut evals = 1; let mut evals = 1;
let rs: RuleEval<A> = (self.eval)(arg); let rs: RuleEval = (self.eval)();
if iters_left <= 0 { if iters_left <= 0 {
return (rs.final_geom, 1); return (rs.final_geom, 1);
// TODO: This is probably wrong because of the way that // TODO: This is probably wrong because of the way that
@ -93,7 +93,7 @@ impl<A> Rule<A> {
let subgeom: Vec<(OpenMesh, &Vec<usize>)> = rs.children.iter().map(|sub| { let subgeom: Vec<(OpenMesh, &Vec<usize>)> = rs.children.iter().map(|sub| {
// Get sub-geometry (still un-transformed): // Get sub-geometry (still un-transformed):
let (submesh, eval) = sub.rule.to_mesh(arg, iters_left - 1); let (submesh, eval) = sub.rule.to_mesh(iters_left - 1);
// Tally up eval count: // Tally up eval count:
evals += eval; evals += eval;
@ -109,11 +109,11 @@ impl<A> Rule<A> {
/// This should be identical to to_mesh, but implemented /// This should be identical to to_mesh, but implemented
/// iteratively with an explicit stack rather than with recursive /// iteratively with an explicit stack rather than with recursive
/// function calls. /// function calls.
pub fn to_mesh_iter(&self, arg: &A, max_depth: usize) -> (OpenMesh, usize) { pub fn to_mesh_iter(&self, max_depth: usize) -> (OpenMesh, usize) {
struct State<A> { struct State {
// The set of rules we're currently handling: // The set of rules we're currently handling:
rules: Vec<Child<A>>, rules: Vec<Child>,
// The next element of 'children' to handle: // The next element of 'children' to handle:
next: usize, next: usize,
// World transform of the *parent* of 'rules', that is, // World transform of the *parent* of 'rules', that is,
@ -130,8 +130,8 @@ impl<A> Rule<A> {
// (usually because they involve multiple rules). // (usually because they involve multiple rules).
// //
// We evaluate our own rule to initialize the stack: // We evaluate our own rule to initialize the stack:
let eval = (self.eval)(arg); let eval = (self.eval)();
let mut stack: Vec<State<A>> = vec![State { let mut stack: Vec<State> = vec![State {
rules: eval.children, rules: eval.children,
next: 0, next: 0,
xf: nalgebra::geometry::Transform3::identity().to_homogeneous(), xf: nalgebra::geometry::Transform3::identity().to_homogeneous(),
@ -159,7 +159,7 @@ impl<A> Rule<A> {
// Evaluate the rule: // Evaluate the rule:
let child = &s.rules[s.next]; let child = &s.rules[s.next];
let mut eval = (child.rule.eval)(arg); let mut eval = (child.rule.eval)();
eval_count += 1; eval_count += 1;
// Make an updated world transform: // Make an updated world transform: