Trying type parameters instead
This commit is contained in:
parent
b454588f41
commit
4c626f6358
708
src/examples.rs
708
src/examples.rs
@ -6,354 +6,386 @@ use crate::rule::{Rule, RuleStep, Child};
|
||||
use crate::prim;
|
||||
use crate::util;
|
||||
|
||||
fn curve_horn_start() -> RuleStep {
|
||||
let id = nalgebra::geometry::Transform3::identity().to_homogeneous();
|
||||
let flip180 = nalgebra::geometry::Rotation3::from_axis_angle(
|
||||
&nalgebra::Vector3::y_axis(),
|
||||
std::f32::consts::PI).to_homogeneous();
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: vec![
|
||||
struct CurveHorn {
|
||||
seed: Vec<Vertex>,
|
||||
id_xform: Mat4,
|
||||
flip180: Mat4,
|
||||
incr: Mat4,
|
||||
}
|
||||
|
||||
impl CurveHorn {
|
||||
|
||||
fn init() -> CurveHorn {
|
||||
let y = &Vector3::y_axis();
|
||||
CurveHorn {
|
||||
seed: vec![
|
||||
vertex(-0.5, -0.5, 0.0),
|
||||
vertex(-0.5, 0.5, 0.0),
|
||||
vertex( 0.5, 0.5, 0.0),
|
||||
vertex( 0.5, -0.5, 0.0),
|
||||
],
|
||||
faces: vec![],
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||
xf: id,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||
xf: flip180,
|
||||
vmap: vec![3,2,1,0],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
fn curve_horn_thing_rule() -> RuleStep {
|
||||
|
||||
let y = &Vector3::y_axis();
|
||||
|
||||
let m: Mat4 = geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.95) *
|
||||
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous();
|
||||
|
||||
let verts = vec![
|
||||
vertex(-0.5, -0.5, 0.0),
|
||||
vertex(-0.5, 0.5, 0.0),
|
||||
vertex( 0.5, 0.5, 0.0),
|
||||
vertex( 0.5, -0.5, 0.0),
|
||||
];
|
||||
let next_verts: Vec<Vertex> = verts.iter().map(|v| m * v).collect();
|
||||
|
||||
let geom = OpenMesh {
|
||||
verts: next_verts.clone(),
|
||||
faces: vec![
|
||||
// The below is just connecting two groups of 4 vertices
|
||||
// each, straight across and then to the next.
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
// TODO: I should really generate these, not hard-code them.
|
||||
],
|
||||
};
|
||||
|
||||
// TODO: This could be made slightly nicer by taking it to a peak
|
||||
// instead of just flattening it in XY, but this is a pretty minor
|
||||
// change.
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
|
||||
RuleStep{
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(curve_horn_thing_rule),
|
||||
xf: m,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
fn cube_thing_rule() -> RuleStep {
|
||||
|
||||
let mesh = prim::cube();
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
|
||||
let y = &Vector3::y_axis();
|
||||
let z = &Vector3::z_axis();
|
||||
|
||||
// Each element of this turns to a branch for the recursion:
|
||||
let turns: Vec<Mat4> = vec![
|
||||
geometry::Transform3::identity().to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||
];
|
||||
|
||||
let gen_rulestep = |rot: &Mat4| -> Child {
|
||||
let m: Mat4 = rot *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||
Child {
|
||||
rule: Rule::Recurse(cube_thing_rule),
|
||||
xf: m,
|
||||
vmap: vec![],
|
||||
id_xform: nalgebra::geometry::Transform3::identity().to_homogeneous(),
|
||||
flip180: nalgebra::geometry::Rotation3::from_axis_angle(
|
||||
&nalgebra::Vector3::y_axis(),
|
||||
std::f32::consts::PI).to_homogeneous(),
|
||||
incr: geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.95) *
|
||||
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous(),
|
||||
}
|
||||
};
|
||||
|
||||
RuleStep {
|
||||
geom: mesh,
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: turns.iter().map(gen_rulestep).collect(),
|
||||
}
|
||||
}
|
||||
|
||||
// Conversion from Python & automata_scratch
|
||||
fn ram_horn_start() -> RuleStep {
|
||||
let opening_xform = |i| {
|
||||
let r = std::f32::consts::FRAC_PI_2 * i;
|
||||
((geometry::Rotation3::from_axis_angle(
|
||||
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
|
||||
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
||||
};
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: vec![
|
||||
// 'Top' vertices:
|
||||
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
|
||||
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
|
||||
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
|
||||
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
|
||||
// Top edge midpoints:
|
||||
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
|
||||
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
|
||||
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
|
||||
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
|
||||
// Top middle:
|
||||
vertex( 0.0, 0.0, 1.0), // 8
|
||||
// 'Bottom' vertices:
|
||||
vertex(-0.5, -0.5, 0.0), // 9
|
||||
vertex(-0.5, 0.5, 0.0), // 10
|
||||
vertex( 0.5, 0.5, 0.0), // 11
|
||||
vertex( 0.5, -0.5, 0.0), // 12
|
||||
|
||||
fn start(&self) -> RuleStep<Self> {
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: self.seed.clone(),
|
||||
faces: vec![],
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::recur),
|
||||
xf: self.id_xform,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::recur),
|
||||
xf: self.flip180,
|
||||
vmap: vec![3,2,1,0],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
fn recur(&self) -> RuleStep<Self> {
|
||||
|
||||
let verts = self.seed.clone();
|
||||
let next_verts: Vec<Vertex> = verts.iter().map(|v| self.incr * v).collect();
|
||||
|
||||
let geom = OpenMesh {
|
||||
verts: next_verts.clone(),
|
||||
faces: vec![
|
||||
// bottom face:
|
||||
Tag::Body(9), Tag::Body(10), Tag::Body(11),
|
||||
Tag::Body(9), Tag::Body(11), Tag::Body(12),
|
||||
// two faces straddling edge from vertex 0:
|
||||
Tag::Body(9), Tag::Body(0), Tag::Body(4),
|
||||
Tag::Body(9), Tag::Body(7), Tag::Body(0),
|
||||
// two faces straddling edge from vertex 1:
|
||||
Tag::Body(10), Tag::Body(1), Tag::Body(5),
|
||||
Tag::Body(10), Tag::Body(4), Tag::Body(1),
|
||||
// two faces straddling edge from vertex 2:
|
||||
Tag::Body(11), Tag::Body(2), Tag::Body(6),
|
||||
Tag::Body(11), Tag::Body(5), Tag::Body(2),
|
||||
// two faces straddling edge from vertex 3:
|
||||
Tag::Body(12), Tag::Body(3), Tag::Body(7),
|
||||
Tag::Body(12), Tag::Body(6), Tag::Body(3),
|
||||
// four faces from edge (0,1), (1,2), (2,3), (3,0):
|
||||
Tag::Body(9), Tag::Body(4), Tag::Body(10),
|
||||
Tag::Body(10), Tag::Body(5), Tag::Body(11),
|
||||
Tag::Body(11), Tag::Body(6), Tag::Body(12),
|
||||
Tag::Body(12), Tag::Body(7), Tag::Body(9),
|
||||
// The below is just connecting two groups of 4 vertices
|
||||
// each, straight across and then to the next.
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
// TODO: I should really generate these, not hard-code them.
|
||||
],
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(ram_horn),
|
||||
xf: opening_xform(0.0),
|
||||
vmap: vec![5,2,6,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(ram_horn),
|
||||
xf: opening_xform(1.0),
|
||||
vmap: vec![4,1,5,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(ram_horn),
|
||||
xf: opening_xform(2.0),
|
||||
vmap: vec![7,0,4,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(ram_horn),
|
||||
xf: opening_xform(3.0),
|
||||
vmap: vec![6,3,7,8],
|
||||
},
|
||||
// TODO: These vertex mappings appear to be right.
|
||||
// Explain *why* they are right.
|
||||
],
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
fn ram_horn() -> RuleStep {
|
||||
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
|
||||
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.9);
|
||||
let seed = vec![
|
||||
vertex(-0.5, -0.5, 1.0),
|
||||
vertex(-0.5, 0.5, 1.0),
|
||||
vertex( 0.5, 0.5, 1.0),
|
||||
vertex( 0.5, -0.5, 1.0),
|
||||
];
|
||||
let next = seed.iter().map(|v| incr * v).collect();
|
||||
let geom = OpenMesh {
|
||||
verts: next,
|
||||
faces: vec![
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
],
|
||||
};
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
RuleStep {
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(ram_horn),
|
||||
xf: incr,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
fn ram_horn_branch() -> RuleStep {
|
||||
|
||||
}
|
||||
*/
|
||||
|
||||
// Meant to be a copy of twist_from_gen from Python & automata_scratch
|
||||
pub fn twist_start() -> RuleStep {
|
||||
//let ang=0.1;
|
||||
let dx0=2.0;
|
||||
let count=4;
|
||||
// TODO: Factor these out (see twist)
|
||||
|
||||
let seed = util::subdivide_cycle(&vec![
|
||||
vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5),
|
||||
], 2);
|
||||
// TODO: Factor out
|
||||
let n = seed.len();
|
||||
// TODO: Factor out subdiv size
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
let y = &Vector3::y_axis();
|
||||
let xform = |i| {
|
||||
(geometry::Rotation3::from_axis_angle(y, qtr * (i as f32)).to_homogeneous() *
|
||||
geometry::Translation3::new(dx0, 0.0, 0.0).to_homogeneous())
|
||||
};
|
||||
|
||||
// First generate 'count' children, each one shifted/rotated
|
||||
// differently:
|
||||
let children: Vec<Child> = (0..count).map(|i| {
|
||||
let xf = xform(i);
|
||||
Child {
|
||||
rule: Rule::Recurse(twist),
|
||||
xf: xf,
|
||||
vmap: (n*i..n*(i+count)).collect(), // N.B.
|
||||
// TODO: This could be made slightly nicer by taking it to a peak
|
||||
// instead of just flattening it in XY, but this is a pretty minor
|
||||
// change.
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
|
||||
RuleStep{
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::recur),
|
||||
xf: self.incr,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
}).collect();
|
||||
|
||||
// Use byproducts of this to make 'count' copies of 'seed' with
|
||||
// this same transform:
|
||||
let mut verts = vec![];
|
||||
for child in &children {
|
||||
verts.extend(seed.iter().map(|v| child.xf * v));
|
||||
}
|
||||
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: verts,
|
||||
faces: vec![],
|
||||
// TODO: Close these initial faces off
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: children,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn twist() -> RuleStep {
|
||||
let ang=0.1;
|
||||
let dx0=2.0;
|
||||
let dy=0.1;
|
||||
// TODO: Factor these out (see twist_start)
|
||||
struct CubeThing {
|
||||
}
|
||||
|
||||
let y = &Vector3::y_axis();
|
||||
let incr = geometry::Translation3::new(-dx0, 0.0, 0.0).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(y, ang).to_homogeneous() *
|
||||
geometry::Translation3::new(dx0, dy, 0.0).to_homogeneous();
|
||||
impl CubeThing {
|
||||
|
||||
fn init() -> CubeThing {
|
||||
CubeThing {}
|
||||
}
|
||||
|
||||
let seed_orig = vec![
|
||||
vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5),
|
||||
// TODO: Likewise factor these out
|
||||
].iter().map(|v| incr * v).collect();
|
||||
let seed = util::subdivide_cycle(&seed_orig, 2);
|
||||
let n = seed.len();
|
||||
// TODO: Factor out subdiv size
|
||||
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: seed,
|
||||
faces: util::parallel_zigzag_faces(n),
|
||||
},
|
||||
final_geom: prim::empty_mesh(), // TODO: Close properly
|
||||
children: vec![
|
||||
fn rec(&self) -> RuleStep<Self> {
|
||||
|
||||
let mesh = prim::cube();
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
|
||||
let y = &Vector3::y_axis();
|
||||
let z = &Vector3::z_axis();
|
||||
|
||||
// Each element of this turns to a branch for the recursion:
|
||||
let turns: Vec<Mat4> = vec![
|
||||
geometry::Transform3::identity().to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 2.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(y, qtr * 3.0).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, qtr).to_homogeneous(),
|
||||
geometry::Rotation3::from_axis_angle(z, -qtr).to_homogeneous(),
|
||||
];
|
||||
|
||||
let gen_rulestep = |rot: &Mat4| -> Child<Self> {
|
||||
let m: Mat4 = rot *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(6.0, 0.0, 0.0).to_homogeneous();
|
||||
Child {
|
||||
rule: Rule::Recurse(twist),
|
||||
xf: incr,
|
||||
vmap: (0..n).collect(),
|
||||
rule: Rule::Recurse(Self::rec),
|
||||
xf: m,
|
||||
vmap: vec![],
|
||||
}
|
||||
};
|
||||
|
||||
RuleStep {
|
||||
geom: mesh,
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: turns.iter().map(gen_rulestep).collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct RamHorn {
|
||||
}
|
||||
|
||||
impl RamHorn {
|
||||
|
||||
fn init() -> RamHorn {
|
||||
RamHorn{}
|
||||
}
|
||||
|
||||
// Conversion from Python & automata_scratch
|
||||
fn start(&self) -> RuleStep<Self> {
|
||||
let opening_xform = |i| {
|
||||
let r = std::f32::consts::FRAC_PI_2 * i;
|
||||
((geometry::Rotation3::from_axis_angle(
|
||||
&nalgebra::Vector3::z_axis(), r).to_homogeneous()) *
|
||||
geometry::Translation3::new(0.25, 0.25, 1.0).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.5) *
|
||||
geometry::Translation3::new(0.0, 0.0, -1.0).to_homogeneous())
|
||||
};
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: vec![
|
||||
// 'Top' vertices:
|
||||
vertex(-0.5, -0.5, 1.0), // 0 (above 9)
|
||||
vertex(-0.5, 0.5, 1.0), // 1 (above 10)
|
||||
vertex( 0.5, 0.5, 1.0), // 2 (above 11)
|
||||
vertex( 0.5, -0.5, 1.0), // 3 (above 12)
|
||||
// Top edge midpoints:
|
||||
vertex(-0.5, 0.0, 1.0), // 4 (connects 0-1)
|
||||
vertex( 0.0, 0.5, 1.0), // 5 (connects 1-2)
|
||||
vertex( 0.5, 0.0, 1.0), // 6 (connects 2-3)
|
||||
vertex( 0.0, -0.5, 1.0), // 7 (connects 3-0)
|
||||
// Top middle:
|
||||
vertex( 0.0, 0.0, 1.0), // 8
|
||||
// 'Bottom' vertices:
|
||||
vertex(-0.5, -0.5, 0.0), // 9
|
||||
vertex(-0.5, 0.5, 0.0), // 10
|
||||
vertex( 0.5, 0.5, 0.0), // 11
|
||||
vertex( 0.5, -0.5, 0.0), // 12
|
||||
],
|
||||
faces: vec![
|
||||
// bottom face:
|
||||
Tag::Body(9), Tag::Body(10), Tag::Body(11),
|
||||
Tag::Body(9), Tag::Body(11), Tag::Body(12),
|
||||
// two faces straddling edge from vertex 0:
|
||||
Tag::Body(9), Tag::Body(0), Tag::Body(4),
|
||||
Tag::Body(9), Tag::Body(7), Tag::Body(0),
|
||||
// two faces straddling edge from vertex 1:
|
||||
Tag::Body(10), Tag::Body(1), Tag::Body(5),
|
||||
Tag::Body(10), Tag::Body(4), Tag::Body(1),
|
||||
// two faces straddling edge from vertex 2:
|
||||
Tag::Body(11), Tag::Body(2), Tag::Body(6),
|
||||
Tag::Body(11), Tag::Body(5), Tag::Body(2),
|
||||
// two faces straddling edge from vertex 3:
|
||||
Tag::Body(12), Tag::Body(3), Tag::Body(7),
|
||||
Tag::Body(12), Tag::Body(6), Tag::Body(3),
|
||||
// four faces from edge (0,1), (1,2), (2,3), (3,0):
|
||||
Tag::Body(9), Tag::Body(4), Tag::Body(10),
|
||||
Tag::Body(10), Tag::Body(5), Tag::Body(11),
|
||||
Tag::Body(11), Tag::Body(6), Tag::Body(12),
|
||||
Tag::Body(12), Tag::Body(7), Tag::Body(9),
|
||||
],
|
||||
},
|
||||
],
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::ram_horn),
|
||||
xf: opening_xform(0.0),
|
||||
vmap: vec![5,2,6,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::ram_horn),
|
||||
xf: opening_xform(1.0),
|
||||
vmap: vec![4,1,5,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::ram_horn),
|
||||
xf: opening_xform(2.0),
|
||||
vmap: vec![7,0,4,8],
|
||||
},
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::ram_horn),
|
||||
xf: opening_xform(3.0),
|
||||
vmap: vec![6,3,7,8],
|
||||
},
|
||||
// TODO: These vertex mappings appear to be right.
|
||||
// Explain *why* they are right.
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
fn ram_horn(&self) -> RuleStep<Self> {
|
||||
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
|
||||
let incr: Mat4 = geometry::Translation3::new(0.0, 0.0, 0.8).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(&v, 0.3).to_homogeneous() *
|
||||
Matrix4::new_scaling(0.9);
|
||||
let seed = vec![
|
||||
vertex(-0.5, -0.5, 1.0),
|
||||
vertex(-0.5, 0.5, 1.0),
|
||||
vertex( 0.5, 0.5, 1.0),
|
||||
vertex( 0.5, -0.5, 1.0),
|
||||
];
|
||||
let next = seed.iter().map(|v| incr * v).collect();
|
||||
let geom = OpenMesh {
|
||||
verts: next,
|
||||
faces: vec![
|
||||
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
|
||||
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
|
||||
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
|
||||
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
|
||||
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
|
||||
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
|
||||
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
|
||||
],
|
||||
};
|
||||
let final_geom = OpenMesh {
|
||||
verts: vec![],
|
||||
faces: vec![
|
||||
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
|
||||
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
|
||||
],
|
||||
};
|
||||
RuleStep {
|
||||
geom: geom,
|
||||
final_geom: final_geom,
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::ram_horn),
|
||||
xf: incr,
|
||||
vmap: vec![0,1,2,3],
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Twist {
|
||||
seed: Vec<Vertex>,
|
||||
seed_sub: Vec<Vertex>,
|
||||
dx0: f32,
|
||||
dy: f32,
|
||||
ang: f32,
|
||||
count: usize,
|
||||
subdiv: usize,
|
||||
}
|
||||
|
||||
impl Twist {
|
||||
|
||||
pub fn init() -> Twist {
|
||||
let subdiv = 2;
|
||||
let seed = vec![
|
||||
vertex(-0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, -0.5),
|
||||
vertex( 0.5, 0.0, 0.5),
|
||||
vertex(-0.5, 0.0, 0.5),
|
||||
];
|
||||
let seed_sub = util::subdivide_cycle(&seed, subdiv);
|
||||
Twist {
|
||||
dx0: 2.0,
|
||||
dy: 0.1,
|
||||
ang: 0.1,
|
||||
count: 4,
|
||||
seed: seed,
|
||||
seed_sub: seed_sub,
|
||||
subdiv: subdiv,
|
||||
}
|
||||
}
|
||||
|
||||
// Meant to be a copy of twist_from_gen from Python & automata_scratch
|
||||
pub fn start(&self) -> RuleStep<Twist> {
|
||||
|
||||
let n = self.seed.len();
|
||||
|
||||
// Quarter-turn in radians:
|
||||
let qtr = std::f32::consts::FRAC_PI_2;
|
||||
let y = &Vector3::y_axis();
|
||||
let xform = |i| {
|
||||
(geometry::Rotation3::from_axis_angle(y, qtr * (i as f32)).to_homogeneous() *
|
||||
geometry::Translation3::new(self.dx0, 0.0, 0.0).to_homogeneous())
|
||||
};
|
||||
|
||||
// First generate 'count' children, each one shifted/rotated
|
||||
// differently:
|
||||
let children: Vec<Child<Twist>> = (0..self.count).map(|i| {
|
||||
let xf = xform(i);
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::recur),
|
||||
xf: xf,
|
||||
vmap: (n*i..n*(i+self.count)).collect(), // N.B.
|
||||
}
|
||||
}).collect();
|
||||
|
||||
// Use byproducts of this to make 'count' copies of 'seed' with
|
||||
// this same transform:
|
||||
let mut verts = vec![];
|
||||
for child in &children {
|
||||
verts.extend(self.seed_sub.iter().map(|v| child.xf * v));
|
||||
}
|
||||
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: verts,
|
||||
faces: vec![],
|
||||
// TODO: Close these initial faces off
|
||||
},
|
||||
final_geom: prim::empty_mesh(),
|
||||
children: children,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn recur(&self) -> RuleStep<Twist> {
|
||||
let y = &Vector3::y_axis();
|
||||
let incr = geometry::Translation3::new(-self.dx0, 0.0, 0.0).to_homogeneous() *
|
||||
geometry::Rotation3::from_axis_angle(y, self.ang).to_homogeneous() *
|
||||
geometry::Translation3::new(self.dx0, self.dy, 0.0).to_homogeneous();
|
||||
|
||||
let seed_orig = self.seed.iter().map(|v| incr * v).collect();
|
||||
let seed_sub = util::subdivide_cycle(&seed_orig, self.subdiv);
|
||||
let n = seed_sub.len();
|
||||
|
||||
RuleStep {
|
||||
geom: OpenMesh {
|
||||
verts: seed_sub,
|
||||
faces: util::parallel_zigzag_faces(n),
|
||||
},
|
||||
final_geom: prim::empty_mesh(), // TODO: Close properly
|
||||
children: vec![
|
||||
Child {
|
||||
rule: Rule::Recurse(Self::recur),
|
||||
xf: incr,
|
||||
vmap: (0..n).collect(),
|
||||
},
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -370,21 +402,21 @@ pub fn main() {
|
||||
println!("vs={:?}", vs);
|
||||
println!("vs2={:?}", vs2);
|
||||
}
|
||||
|
||||
let run_test = |r: Rule, iters, name| {
|
||||
|
||||
fn run_test<A>(a: A, r: Rule<A>, iters: u32, name: &str) {
|
||||
println!("Running {}...", name);
|
||||
let (mesh, nodes) = r.to_mesh(iters);
|
||||
let (mesh, nodes) = r.to_mesh(&a, iters);
|
||||
println!("Merged {} nodes", nodes);
|
||||
let fname = format!("{}.stl", name);
|
||||
println!("Writing {}...", fname);
|
||||
mesh.write_stl_file(&fname).unwrap();
|
||||
};
|
||||
}
|
||||
|
||||
run_test(Rule::Recurse(cube_thing_rule), 3, "cube_thing");
|
||||
run_test(CubeThing::init(), Rule::Recurse(CubeThing::rec), 3, "cube_thing");
|
||||
// this can't work on its own because the resultant OpenMesh still
|
||||
// has parent references:
|
||||
//run_test(Rule::Recurse(curve_horn_thing_rule), 100, "curve_horn_thing");
|
||||
run_test(Rule::Recurse(curve_horn_start), 100, "curve_horn2");
|
||||
run_test(Rule::Recurse(ram_horn_start), 200, "ram_horn");
|
||||
run_test(Rule::Recurse(twist_start), 200, "twist");
|
||||
//run_test(Rule::Recurse(recur), 100, "curve_horn_thing");
|
||||
run_test(CurveHorn::init(), Rule::Recurse(CurveHorn::start), 100, "curve_horn2");
|
||||
run_test(RamHorn::init(), Rule::Recurse(RamHorn::start), 200, "ram_horn");
|
||||
run_test(Twist::init(), Rule::Recurse(Twist::start), 200, "twist");
|
||||
}
|
||||
|
||||
22
src/rule.rs
22
src/rule.rs
@ -6,9 +6,9 @@ use crate::prim;
|
||||
/// - produces geometry when it is evaluated
|
||||
/// - tells what other rules to invoke, and what to do with their
|
||||
/// geometry
|
||||
pub enum Rule {
|
||||
pub enum Rule<A> {
|
||||
/// Produce some geometry, and possibly recurse further.
|
||||
Recurse(fn () -> RuleStep),
|
||||
Recurse(fn (&A) -> RuleStep<A>),
|
||||
/// Produce nothing and recurse no further.
|
||||
EmptyRule,
|
||||
}
|
||||
@ -28,7 +28,7 @@ pub enum Rule {
|
||||
/// - if recursion continues, the rules of `children` are evaluated,
|
||||
/// and the resultant geometry is transformed and then connected with
|
||||
/// `geom`.
|
||||
pub struct RuleStep {
|
||||
pub struct RuleStep<A> {
|
||||
/// The geometry generated at just this iteration
|
||||
pub geom: OpenMesh,
|
||||
|
||||
@ -43,16 +43,16 @@ pub struct RuleStep {
|
||||
/// The child invocations (used if recursion continues). The
|
||||
/// 'parent' mesh, from the perspective of all geometry produced
|
||||
/// by `children`, is `geom`.
|
||||
pub children: Vec<Child>,
|
||||
pub children: Vec<Child<A>>,
|
||||
}
|
||||
|
||||
/// `Child` evaluations, pairing another `Rule` with the
|
||||
/// transformations and parent vertex mappings that should be applied
|
||||
/// to it.
|
||||
pub struct Child {
|
||||
pub struct Child<A> {
|
||||
|
||||
/// Rule to evaluate to produce geometry
|
||||
pub rule: Rule,
|
||||
pub rule: Rule<A>,
|
||||
|
||||
/// The transform to apply to all geometry produced by `rule`
|
||||
/// (including its own `geom` and `final_geom` if needed, as well
|
||||
@ -67,7 +67,7 @@ pub struct Child {
|
||||
pub vmap: Vec<usize>,
|
||||
}
|
||||
|
||||
impl Rule {
|
||||
impl<A> Rule<A> {
|
||||
|
||||
// TODO: Do I want to make 'geom' shared somehow, maybe with Rc? I
|
||||
// could end up having a lot of identical geometry that need not be
|
||||
@ -80,14 +80,14 @@ impl Rule {
|
||||
/// Convert this `Rule` to mesh data, recursively. `iters_left`
|
||||
/// sets the maximum recursion depth. This returns (geometry,
|
||||
/// number of rule evaluations).
|
||||
pub fn to_mesh(&self, iters_left: u32) -> (OpenMesh, u32) {
|
||||
pub fn to_mesh(&self, arg: &A, iters_left: u32) -> (OpenMesh, u32) {
|
||||
|
||||
let mut evals: u32 = 1;
|
||||
|
||||
if iters_left <= 0 {
|
||||
match self {
|
||||
Rule::Recurse(f) => {
|
||||
let rs: RuleStep = f();
|
||||
let rs: RuleStep<A> = f(arg);
|
||||
return (rs.final_geom, 1);
|
||||
}
|
||||
Rule::EmptyRule => {
|
||||
@ -98,13 +98,13 @@ impl Rule {
|
||||
|
||||
match self {
|
||||
Rule::Recurse(f) => {
|
||||
let rs: RuleStep = f();
|
||||
let rs: RuleStep<A> = f(arg);
|
||||
// TODO: This logic is more or less right, but it
|
||||
// could perhaps use some un-tupling or something.
|
||||
|
||||
let subgeom: Vec<(OpenMesh, &Vec<usize>)> = rs.children.iter().map(|sub| {
|
||||
// Get sub-geometry (still un-transformed):
|
||||
let (submesh, eval) = sub.rule.to_mesh(iters_left - 1);
|
||||
let (submesh, eval) = sub.rule.to_mesh(arg, iters_left - 1);
|
||||
// Tally up eval count:
|
||||
evals += eval;
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user