Partially convert curve_horn_*, which required RuleStep addition

This commit is contained in:
Chris Hodapp 2020-02-15 11:57:40 -05:00
parent 721dd6c861
commit 434c87ed67

View File

@ -41,6 +41,8 @@ impl OpenMesh {
fn transform(&self, xfm: Mat4) -> OpenMesh {
OpenMesh {
verts: self.verts.iter().map(|v| xfm * v).collect(),
// TODO: Is the above faster if I pack vectors into a
// bigger matrix?
faces: self.faces.clone(), // TODO: Use Rc?
idxs_entrance: self.idxs_entrance.clone(), // TODO: Use Rc?
idxs_exit: self.idxs_exit.clone(), // TODO: Use Rc?
@ -201,6 +203,12 @@ struct RuleStep {
// the child rules).
geom: OpenMesh,
// The "final" geometry, used only if recursion must be stopped.
// This should be in the same coordinate space as 'geom', and
// properly close any exit groups that it may have (and have no
// exit groups of its own).
final_geom: OpenMesh,
// Child rules, paired with the transform that will be applied to
// all of their geometry
children: Vec<(Rule, Mat4)>,
@ -221,8 +229,16 @@ impl Rule {
let mut nodes: u32 = 1;
if iters_left <= 0 {
match self {
Rule::Recurse(f) => {
let rs: RuleStep = f();
return (rs.final_geom, 1);
}
Rule::EmptyRule => {
return (empty_mesh(), nodes);
}
}
}
match self {
Rule::Recurse(f) => {
@ -293,7 +309,7 @@ fn cube() -> OpenMesh {
}
/*
fn curve_horn_start() -> Vec<RuleStep> {
fn curve_horn_start() -> RuleStep {
// Seed is a square in XY, sidelength 1, centered at (0,0,0):
let seed = {
let m = OpenMesh {
@ -335,42 +351,65 @@ fn curve_horn_start() -> Vec<RuleStep> {
}
//use std::convert::TryFrom;
fn curve_horn_thing_rule() -> Vec<RuleStep> {
let gen_geom = |seed: &Mesh| -> RuleStep {
let mut mesh = seed.clone();
let m: Mat4 = tm::Matrix4::from_angle_y(Rad(0.1)) *
tm::Matrix4::from_scale(0.95) *
tm::Matrix4::from_translation(vec3(0.0, 0.0, 0.2));
let r = Rule::Recurse(curve_horn_thing_rule);
mesh.apply_transformation(m);
// TODO: Fix this horrible code below that is seemingly
// correct, but shouldn't be run on every rule iteration!
// Collect together all the vertices from the boundaries of
// 'seed' and 'mesh':
let edge2vert = |m: &Mesh, e: HalfEdgeID| {
let v = m.vertex_position(m.edge_vertices(e).0);
vec![v.x, v.y, v.z]
};
let i1 = MeshBound::new(&seed).unwrap().flat_map(|id| edge2vert(&seed, id));
let i2 = MeshBound::new(&mesh).unwrap().flat_map(|id| edge2vert(&mesh, id));
let verts: Vec<f64> = i1.chain(i2).collect();
/*
let vert2str = |idx: u32| {
let i2: usize = idx as _;
format!("({:.4},{:.4},{:.4})", verts[3*i2], verts[3*i2+1], verts[3*i2+2])
};
for i in 0..(seed.no_vertices() + mesh.no_vertices()) {
println!("vert {}: {}", i, vert2str(i as _))
}
*/
fn curve_horn_thing_rule() -> RuleStep {
let y = &Vector3::y_axis();
let m: Mat4 = geometry::Rotation3::from_axis_angle(y, 0.1).to_homogeneous() *
Matrix4::new_scaling(0.95) *
geometry::Translation3::new(0.0, 0.0, 0.2).to_homogeneous();
let mut verts = vec![
vertex(-0.5, -0.5, 0.0),
vertex(0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex(0.5, 0.5, 0.0),
];
let mut v2: Vec<Vertex> = verts.iter().map(|v| m * v).collect();
let final_verts: Vec<Vertex> = v2.clone();
verts.append(&mut v2);
let geom = OpenMesh {
verts: verts,
faces: vec![
// Endcaps purposely left off for now.
// TODO: I should really generate these, not hard-code them.
1, 7, 5,
1, 3, 7,
4, 2, 0,
4, 6, 2,
2, 7, 3,
2, 6, 7,
0, 1, 5,
0, 5, 4,
],
idxs_entrance: vec![0],
idxs_exit: vec![4],
idxs_body: (4, 4),
};
let final_geom = OpenMesh {
verts: final_verts,
faces: vec![
0, 3, 1,
0, 2, 3,
],
idxs_entrance: vec![0],
idxs_exit: vec![],
idxs_body: (4, 4),
};
RuleStep{
geom: geom,
final_geom: final_geom,
children: vec![
(Rule::Recurse(curve_horn_thing_rule), m),
],
}
/*
// We need 3 indices per face, 2 faces per (boundary) vertex:
let num_verts = seed.no_vertices();
let mut idxs: Vec<u32> = vec![0; 2 * num_verts * 3];
@ -392,55 +431,8 @@ fn curve_horn_thing_rule() -> Vec<RuleStep> {
idxs[6*i + 5] = b2;
//println!("connect vert {}, face 2: ({}, {}, {}) = {}, {}, {}", i, b1, a2, b2, vert2str(b1), vert2str(a2), vert2str(b2));
}
// TODO: Something is *still* not quite right there. I think
// that I cannot use MeshBuilder this way and then append
// meshes - it just leads to disconnected geometry
let joined = match tm::MeshBuilder::new().
with_positions(verts).
with_indices(idxs).
build()
{
Ok(m) => m,
Err(error) => {
panic!("Error building mesh: {:?}", error)
},
};
RuleStep { geom: joined, rule: Box::new(r), xform: m, seeds: vec![seed.clone()] }
};
// Since 'mesh' is computed directly by applying 'm' to 'seed',
// trivially, we follow the requirement in a RuleStep that
// applying 'xform' to 'seeds' puts it into the same space as
// 'geom'.
v.iter().map(gen_geom).collect()
}
// Assume v0, v1, and v2 are non-collinear points. This tries to
// produce a transform which treats v0 as the origin of a new
// coordinate system, the line from v0 to v1 as the new X axis, the Y
// axis perpendicular to this along the plane that (v0,v1,v2) forms,
// and the Z axis the normal of this same plane.
//
// Scale is taken into account (to the extent that the length of
// (v1-v0) is taken as distance 1 in the new coordinate system).
fn points_to_xform(v0: Point3<f64>, v1: Point3<f64>, v2: Point3<f64>) -> Mat4 {
let x: Vec3 = v1 - v0;
let xn: Vec3 = x.normalize();
let zn: Vec3 = x.cross(v2 - v0).normalize();
let yn: Vec3 = zn.cross(xn);
let s = x.magnitude();
let _m: Mat4 = tm::Matrix4::from_cols(
(xn*s).extend(0.0), // new X
(yn*s).extend(0.0), // new Y
(zn*s).extend(0.0), // new Z
v0.to_homogeneous(), // translation
);
return _m;
}
*/
}
fn cube_thing_rule() -> RuleStep {
@ -471,79 +463,11 @@ fn cube_thing_rule() -> RuleStep {
RuleStep {
geom: mesh,
final_geom: empty_mesh(), // no exit groups
children: turns.iter().map(gen_rulestep).collect(),
}
}
// Have I any need of this after making OpenMesh?
/*
struct MeshBound<'a> {
m: &'a Mesh,
start: HalfEdgeID,
cur: HalfEdgeID,
done: bool,
}
impl<'a> MeshBound<'a> {
fn new(m: &'a Mesh) -> Option<MeshBound> {
for halfedge_id in m.edge_iter() {
if m.is_edge_on_boundary(halfedge_id) {
return Some(MeshBound {
m: m,
start: halfedge_id,
cur: halfedge_id,
done: false,
});
}
}
// TODO: Maybe just return an iterator that returns None
// immediately if this mesh has no boundary?
return None;
}
}
impl<'a> Iterator for MeshBound<'a> {
type Item = HalfEdgeID;
fn next(&mut self) -> Option<Self::Item> {
if self.done {
return None;
}
// Start from our current half-edge:
let (v1, _) = self.m.edge_vertices(self.cur);
// Pick a vertex and walk around incident half-edges:
for halfedge_id in self.m.vertex_halfedge_iter(v1) {
// Avoid twin half-edge, which returns where we started:
let w = self.m.walker_from_halfedge(halfedge_id);
if w.twin_id().map_or(false, |twin| twin == self.cur) {
continue;
}
// TODO: is there a quicker way to get the twin?
// If this incident half-edge is a boundary, follow it:
if self.m.is_edge_on_boundary(halfedge_id) {
self.cur = halfedge_id;
if self.start == self.cur {
// We have returned back to start:
self.done = true;
}
//println!("DEBUG: MeshBound: edge {} is {:?}", halfedge_id, self.m.edge_positions(halfedge_id));
return Some(halfedge_id);
}
}
return None;
}
}
*/
//fn mesh_boundary(m: &Mesh) -> Vec<tri_mesh::HalfEdgeID> {
//}
fn main() {
// Below is so far my only example that uses entrance/exit groups:
@ -597,28 +521,26 @@ fn main() {
inc = inc.transform(xform);
mesh = mesh.connect_single(&inc);
}
//println!("mesh = {:?}", mesh);
}
{
let r = Rule::Recurse(cube_thing_rule);
let max_iters = 4;
println!("Running rules...");
let (cubemesh, nodes) = r.to_mesh(max_iters);
println!("Merged {} nodes", nodes);
println!("Writing STL...");
cubemesh.write_stl_file("cubemesh.stl").unwrap();
/*
let r2 = Rule::Recurse(curve_horn_start);
println!("Running rules...");
// Seed:
let seed = {
let indices: Vec<u32> = vec![0, 1, 2, 2, 1, 3];
let positions: Vec<f64> = vec![0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0];
let mut s = tm::MeshBuilder::new().with_indices(indices).with_positions(positions).build().unwrap();
s.apply_transformation(tm::Matrix4::from_translation(vec3(-0.5, -0.5, 0.0)));
s
};
*/
}
{
let r = Rule::Recurse(curve_horn_thing_rule);
let max_iters = 50;
println!("Running rules...");
let (cubemesh, nodes) = r.to_mesh(max_iters);
//println!("cubemesh={:?}", cubemesh);
println!("Merged {} nodes", nodes);
println!("Writing STL...");
cubemesh.write_stl_file("curve_horn_thing.stl").unwrap();
}
}