Add scratch work before refactor. Examples in this rev are likely broken.

This commit is contained in:
Chris Hodapp 2020-05-11 14:34:40 -04:00
parent 10d5314157
commit 0ad03ac77d
3 changed files with 476 additions and 13 deletions

View File

@ -15,3 +15,4 @@ debug = true
euclid = "0.20.7"
nalgebra = "0.19.0"
stl_io = "0.4.2"
rand = "0.7.3"

View File

@ -1,9 +1,10 @@
use std::rc::Rc;
use nalgebra::*;
use rand::Rng;
//pub mod examples;
use crate::openmesh::{OpenMesh, Tag};
use crate::xform::{Transform, vertex};
use crate::xform::{Transform, vertex, Mat4};
use crate::rule::{Rule, RuleFn, RuleEval, Child};
use crate::prim;
use crate::util;
@ -15,7 +16,7 @@ pub fn cube_thing() -> Rule<()> {
//let x = &Vector3::x_axis();
let y = &Vector3::y_axis();
let z = &Vector3::z_axis();
// Each element of this turns to a branch for the recursion:
let id = Transform::new();
let turns: Vec<Transform> = vec![
@ -40,10 +41,98 @@ pub fn cube_thing() -> Rule<()> {
}).collect(),
}
};
Rule { eval: Rc::new(rec), ctxt: () }
}
pub fn barbs() -> Rule<()> {
let base_verts = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let n = base_verts.len();
let incr: Transform = Transform::new().
translate(0.0, 0.0, 1.0).
rotate(&Vector3::z_axis(), 0.1).
scale(0.95);
let b = base_verts.clone();
let barb = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let next_verts = incr.transform(&b);
let geom = Rc::new(util::zigzag_to_parent(next_verts.clone(), n));
let (vc, faces) = util::connect_convex(&next_verts, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
faces: faces,
});
RuleEval {
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
}
]
}
};
let b = base_verts.clone();
let main = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let next_verts = incr.transform(&b);
// TODO: Once I start doing the barbs this will go away
let geom = Rc::new(util::zigzag_to_parent(next_verts.clone(), n));
let (vc, faces) = util::connect_convex(&next_verts, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
faces: faces,
});
RuleEval {
geom: geom,
final_geom: final_geom,
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
}
]
}
};
let main_ = Rc::new(main);
let base = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: base_verts.clone(),
faces: vec![
Tag::Body(0), Tag::Body(1), Tag::Body(2),
Tag::Body(0), Tag::Body(2), Tag::Body(3),
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: main_.clone(), ctxt: () }),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
};
Rule { eval: Rc::new(base), ctxt: () }
}
// Meant to be a copy of twist_from_gen from Python &
// automata_scratch, but has since acquired a sort of life of its own
pub fn twist(f: f32, subdiv: usize) -> Rule<()> {
@ -137,6 +226,126 @@ pub fn twist(f: f32, subdiv: usize) -> Rule<()> {
Rule { eval: Rc::new(start), ctxt: () }
}
#[derive(Copy, Clone)]
pub struct NestSpiral2Ctxt {
init: bool,
stack: [Transform; 2],
}
pub fn nest_spiral_2() -> Rule<NestSpiral2Ctxt> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let seed = util::subdivide_cycle(&seed, subdiv);
let n = seed.len();
let geom = Rc::new(util::zigzag_to_parent(seed.clone(), n));
let (vc, faces) = util::connect_convex(&seed, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
faces: faces,
});
let rad = 1.0;
let dz = 0.1;
let rz = 0.1;
let rad2 = 4.0;
let rz2 = 0.1;
let recur = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
//let x = &Vector3::x_axis();
let z = &Vector3::z_axis();
let stack = self_.ctxt.stack;
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: NestSpiral2Ctxt {
init: false,
stack: [
Transform::new().rotate(z, rz2) * stack[0],
Transform::new().translate(0.0, 0.0, dz).rotate(z, rz) * stack[1],
],
},
};
let xf = stack.iter().fold(Transform::new(), |acc,m| acc * (*m));
if self_.ctxt.init {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n2).collect(),
},
],
}
} else {
RuleEval {
geom: Rc::new(geom.transform(&xf)),
final_geom: Rc::new(final_geom.transform(&xf)),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: Transform::new(),
vmap: (0..n).collect(),
},
],
}
}
};
let count = 3;
let r = Rc::new(recur);
let start = move |self_: Rc<Rule<NestSpiral2Ctxt>>| -> RuleEval<NestSpiral2Ctxt> {
let z = &Vector3::z_axis();
let child = |i: usize| -> Child<NestSpiral2Ctxt> {
let ang = std::f32::consts::PI * 2.0 * (i as f32) / (count as f32);
Child {
rule: Rc::new(Rule {
eval: r.clone(),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [
Transform::new().translate(rad2, 0.0, 0.0),
Transform::new().rotate(z, ang).translate(rad, 0.0, 0.0),
],
},
}),
xf: Transform::new(),
vmap: vec![], // no parent vertices
}
};
RuleEval {
geom: Rc::new(prim::empty_mesh()),
final_geom: Rc::new(prim::empty_mesh()),
children: (0..count).map(child).collect(),
}
};
Rule {
eval: Rc::new(start),
ctxt: NestSpiral2Ctxt {
init: true,
stack: [ // doesn't matter
Transform::new(),
Transform::new(),
],
},
}
}
#[derive(Copy, Clone)]
pub struct TorusCtxt {
init: bool,
@ -236,6 +445,78 @@ pub fn twisty_torus() -> Rule<TorusCtxt> {
}
}
pub fn twisty_torus_hardcode() -> Rule<()> {
let subdiv = 8;
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let xf = Transform::new().rotate(&Vector3::x_axis(), -0.9);
let seed = util::subdivide_cycle(&xf.transform(&seed), subdiv);
let incr = Transform { mtx: Mat4::from_vec(vec![
0.955234, 0.29576725, -0.0070466697, 0.0,
-0.29581502, 0.9552189, -0.007100463, 0.0,
0.004630968, 0.008867174, 0.99994993, 0.0,
-0.034161568, 0.290308, 0.07295418, 0.9999999,
])};
let n = seed.len();
let next = incr.transform(&seed);
let geom = Rc::new(util::zigzag_to_parent(next.clone(), n));
let (vc, faces) = util::connect_convex(&next, true);
let final_geom = Rc::new(OpenMesh {
verts: vec![vc],
faces: faces,
});
let rad = 1.0;
let rad2 = 8.0;
let rad3 = 24.0;
let start = Transform::new().translate(0.0, rad3, 0.0) * Transform::new().translate(0.0, rad2, 0.0) * Transform::new().translate(rad, 0.0, 0.0);
let recur = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: self_.clone(),
xf: incr,
vmap: (0..n).collect(),
},
],
}
};
let start = move |self_: Rc<Rule<()>>| -> RuleEval<()> {
let mut s2 = seed.clone();
let (centroid, f) = util::connect_convex(&s2, false);
s2.push(centroid);
let n2 = s2.len();
let g = OpenMesh { verts: s2, faces: f };
RuleEval {
geom: Rc::new(g.transform(&xf)),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(recur.clone()), ctxt: () }),
xf: incr,
vmap: (0..n2).collect(),
},
],
}
};
Rule {
eval: Rc::new(start),
ctxt: (),
}
}
// This was a mistake that I'd like to understand later:
#[derive(Copy, Clone)]
pub struct WindChimeCtxt {
@ -491,16 +772,7 @@ pub fn ramhorn_branch(depth: usize, f: f32) -> Rule<RamHornCtxt> {
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
verts: next,
faces: vec![
Tag::Body(1), Tag::Parent(0), Tag::Body(0),
Tag::Parent(1), Tag::Parent(0), Tag::Body(1),
Tag::Body(2), Tag::Parent(1), Tag::Body(1),
Tag::Parent(2), Tag::Parent(1), Tag::Body(2),
Tag::Body(3), Tag::Parent(2), Tag::Body(2),
Tag::Parent(3), Tag::Parent(2), Tag::Body(3),
Tag::Body(0), Tag::Parent(3), Tag::Body(3),
Tag::Parent(0), Tag::Parent(3), Tag::Body(0),
],
faces: util::parallel_zigzag_faces(4),
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
@ -646,6 +918,175 @@ pub fn ramhorn_branch(depth: usize, f: f32) -> Rule<RamHornCtxt> {
Rule { eval: Rc::new(start), ctxt: RamHornCtxt { depth } }
}
#[derive(Copy, Clone)]
pub struct RamHornCtxt2 {
depth: usize,
}
pub fn ramhorn_branch_random(depth: usize, f: f32) -> Rule<RamHornCtxt2> {
let v = Unit::new_normalize(Vector3::new(-1.0, 0.0, 1.0));
let incr: Transform = Transform::new().
translate(0.0, 0.0, 0.8 * f).
rotate(&v, 0.4 * f).
scale(1.0 - (1.0 - 0.95)*f);
let seed = vec![
vertex(-0.5, -0.5, 0.0),
vertex(-0.5, 0.5, 0.0),
vertex( 0.5, 0.5, 0.0),
vertex( 0.5, -0.5, 0.0),
];
let next = incr.transform(&seed);
let geom = Rc::new(OpenMesh {
verts: next,
faces: util::parallel_zigzag_faces(4),
});
let final_geom = Rc::new(OpenMesh {
verts: vec![],
faces: vec![
Tag::Parent(0), Tag::Parent(2), Tag::Parent(1),
Tag::Parent(0), Tag::Parent(3), Tag::Parent(2),
],
});
let opening_xform = |i| {
let r = std::f32::consts::FRAC_PI_2 * i;
Transform::new().
rotate(&nalgebra::Vector3::z_axis(), r).
translate(0.25, 0.25, 0.0).
scale(0.5)
};
// 'transition' geometry (when something splits):
let trans_verts = vec![
// 'Top' vertices:
vertex(-0.5, -0.5, 0.0), // 0 (above 9)
vertex(-0.5, 0.5, 0.0), // 1 (above 10)
vertex( 0.5, 0.5, 0.0), // 2 (above 11)
vertex( 0.5, -0.5, 0.0), // 3 (above 12)
// Top edge midpoints:
vertex(-0.5, 0.0, 0.0), // 4 (connects 0-1)
vertex( 0.0, 0.5, 0.0), // 5 (connects 1-2)
vertex( 0.5, 0.0, 0.0), // 6 (connects 2-3)
vertex( 0.0, -0.5, 0.0), // 7 (connects 3-0)
// Top middle:
vertex( 0.0, 0.0, 0.0), // 8
];
let trans_faces = vec![
// two faces straddling edge from vertex 0:
Tag::Parent(0), Tag::Body(0), Tag::Body(4),
Tag::Parent(0), Tag::Body(7), Tag::Body(0),
// two faces straddling edge from vertex 1:
Tag::Parent(1), Tag::Body(1), Tag::Body(5),
Tag::Parent(1), Tag::Body(4), Tag::Body(1),
// two faces straddling edge from vertex 2:
Tag::Parent(2), Tag::Body(2), Tag::Body(6),
Tag::Parent(2), Tag::Body(5), Tag::Body(2),
// two faces straddling edge from vertex 3:
Tag::Parent(3), Tag::Body(3), Tag::Body(7),
Tag::Parent(3), Tag::Body(6), Tag::Body(3),
// four faces from edge (0,1), (1,2), (2,3), (3,0):
Tag::Parent(0), Tag::Body(4), Tag::Parent(1),
Tag::Parent(1), Tag::Body(5), Tag::Parent(2),
Tag::Parent(2), Tag::Body(6), Tag::Parent(3),
Tag::Parent(3), Tag::Body(7), Tag::Parent(0),
];
let trans_geom = Rc::new(OpenMesh {
verts: trans_verts.clone(),
faces: trans_faces.clone(),
});
let trans_children = move |recur: RuleFn<RamHornCtxt2>, ctxt: RamHornCtxt2| {
vec![
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(0.0),
vmap: vec![5,2,6,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(1.0),
vmap: vec![4,1,5,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(2.0),
vmap: vec![7,0,4,8],
},
Child {
rule: Rc::new(Rule { eval: recur.clone(), ctxt }),
xf: opening_xform(3.0),
vmap: vec![6,3,7,8],
},
// TODO: These vertex mappings appear to be right.
// Explain *why* they are right.
// TODO: Factor out the repetition here.
]
};
let tg = trans_geom.clone();
// TODO: Why is that necessary?
let recur = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
if self_.ctxt.depth <= 0 {
let d2 = rand::thread_rng().gen_range(2, 60);
RuleEval {
geom: tg.clone(),
final_geom: final_geom.clone(),
// This final_geom will leave midpoint/centroid
// vertices, but stopping here means none are
// connected anyway - so they can just be ignored.
children: trans_children(self_.eval.clone(), RamHornCtxt2 { depth: d2 }),
}
} else {
let next_rule = Rule {
eval: self_.eval.clone(),
ctxt: RamHornCtxt2 { depth: self_.ctxt.depth - 1 },
};
RuleEval {
geom: geom.clone(),
final_geom: final_geom.clone(),
children: vec![
Child {
rule: Rc::new(next_rule),
xf: incr,
vmap: vec![0,1,2,3],
},
],
}
}
};
let trans = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: trans_geom.clone(),
final_geom: Rc::new(prim::empty_mesh()),
children: trans_children(Rc::new(recur.clone()), self_.ctxt),
}
};
let start = move |self_: Rc<Rule<RamHornCtxt2>>| -> RuleEval<RamHornCtxt2> {
RuleEval {
geom: Rc::new(OpenMesh {
verts: Transform::new().translate(0.0, 0.0, -0.5).transform(&seed),
faces: vec![
Tag::Body(0), Tag::Body(1), Tag::Body(2),
Tag::Body(0), Tag::Body(2), Tag::Body(3),
],
}),
final_geom: Rc::new(prim::empty_mesh()),
children: vec![
Child {
rule: Rc::new(Rule { eval: Rc::new(trans.clone()), ctxt: self_.ctxt }),
xf: Transform::new(),
vmap: vec![0,1,2,3],
},
],
}
};
Rule { eval: Rc::new(start), ctxt: RamHornCtxt2 { depth } }
}
/*
#[derive(Copy, Clone)]
struct CurveHorn {

View File

@ -70,6 +70,9 @@ mod tests {
run_test(examples::cube_thing(), 3, "cube_thing3", false);
}
#[test]
fn barbs() { run_test(examples::barbs(), 20, "barbs", false); }
#[test]
fn twist() {
run_test(examples::twist(1.0, 2), 200, "screw", false);
@ -81,14 +84,27 @@ mod tests {
}
#[test]
fn twisty_torus_hardcode() {
run_test(examples::twisty_torus_hardcode(), 1000, "twisty_torus_hardcode", false);
}
#[test]
#[ignore]
fn twisty_torus_full() {
run_test(examples::twisty_torus(), 40000, "twisty_torus_full", false);
}
#[test]
#[ignore]
fn wind_chime_mistake_thing() {
run_test(examples::wind_chime_mistake_thing(), 400, "wind_chime_mistake_thing", false);
}
#[test]
fn nest_spiral_2() {
run_test(examples::nest_spiral_2(), 200, "nest_spiral_2", false);
}
// This one is very time-consuming to run:
#[test]
#[ignore]
@ -106,6 +122,11 @@ mod tests {
fn ramhorn_branch() {
run_test(examples::ramhorn_branch(24, 0.25), 32, "ram_horn_branch", false);
}
#[test]
fn ramhorn_branch_random() {
run_test(examples::ramhorn_branch_random(24, 0.25), 32, "ram_horn_branch_random", false);
}
}
// need this for now:
// cargo test -- --nocapture