2021-07-03 15:08:39 -04:00

92 lines
2.7 KiB
Python

import numpy as np
def quat2mat(qw, qx, qy, qz):
s = 1
return np.array([
[1-2*s*(qy**2+qz**2), 2*s*(qx*qy-qz*qw), 2*s*(qx*qz+qy*qw), 0],
[2*s*(qx*qy+qz*qw), 1-2*s*(qx**2+qz**2), 2*s*(qy*qz-qx*qw), 0],
[2*s*(qx*qz-qy*qw), 2*s*(qy*qz+qx*qw), 1-2*s*(qx**2+qy**2), 0],
[0, 0, 0, 1],
])
def rotation_quaternion(axis, angle):
"""Returns a quaternion for rotating by some axis and angle.
Inputs:
axis -- numpy array of shape (3,), with axis to rotate around
angle -- angle in radians by which to rotate
"""
qc = np.cos(angle / 2)
qs = np.sin(angle / 2)
qv = qs * np.array(axis)
return (qc, qv[0], qv[1], qv[2])
class Transform(object):
def __init__(self, mtx=None):
if mtx is None:
self.mtx = np.identity(4)
else:
self.mtx = mtx
def _compose(self, mtx2):
return Transform(self.mtx @ mtx2)
def compose(self, xform):
return self._compose(xform.mtx)
def scale(self, *a, **kw):
return self._compose(mtx_scale(*a, **kw))
def translate(self, *a, **kw):
return self._compose(mtx_translate(*a, **kw))
def rotate(self, *a, **kw):
return self._compose(mtx_rotate(*a, **kw))
def reflect(self, *a, **kw):
return self._compose(mtx_reflect(*a, **kw))
def identity(self, *a, **kw):
return self._compose(mtx_identity(*a, **kw))
def apply_to(self, vs):
# Homogeneous coords, so append a column of ones. vh is then shape (N,4):
vh = np.hstack([vs, np.ones((vs.shape[0], 1), dtype=vs.dtype)])
# As we have row vectors, we're doing basically (A*x)^T=(x^T)*(A^T)
# hence transposing the matrix, while vectors are already transposed.
return (vh @ self.mtx.T)[:,0:3]
def get_scale(self):
norms = np.linalg.norm(self.mtx, axis=0)
return norms[:3]
def mtx_scale(sx, sy=None, sz=None):
if sy is None:
sy = sx
if sz is None:
sz = sx
return np.array([
[sx, 0, 0, 0],
[0, sy, 0, 0],
[0, 0, sz, 0],
[0, 0, 0, 1],
])
def mtx_translate(x, y, z):
return np.array([
[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1],
])
def mtx_rotate(axis, angle):
q = rotation_quaternion(axis, angle)
return quat2mat(*q)
def mtx_reflect(axis):
# axis must be norm-1
axis = np.array(axis)
axis = axis / np.linalg.norm(axis)
a,b,c = axis[0], axis[1], axis[2]
return np.array([
[1-2*a*a, -2*a*b, -2*a*c, 0],
[-2*a*b, 1-2*b*b, -2*b*c, 0],
[-2*a*c, -2*b*c, 1-2*c*c, 0],
[0, 0, 0, 1],
])
def mtx_identity():
return np.eye(4)