90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
import numpy
|
|
|
|
def quat2mat(qw, qx, qy, qz):
|
|
s = 1
|
|
return numpy.array([
|
|
[1-2*s*(qy**2+qz**2), 2*s*(qx*qy-qz*qw), 2*s*(qx*qz+qy*qw), 0],
|
|
[2*s*(qx*qy+qz*qw), 1-2*s*(qx**2+qz**2), 2*s*(qy*qz-qx*qw), 0],
|
|
[2*s*(qx*qz-qy*qw), 2*s*(qy*qz+qx*qw), 1-2*s*(qx**2+qy**2), 0],
|
|
[0, 0, 0, 1],
|
|
])
|
|
|
|
def rotation_quaternion(axis, angle):
|
|
"""Returns a quaternion for rotating by some axis and angle.
|
|
|
|
Inputs:
|
|
axis -- numpy array of shape (3,), with axis to rotate around
|
|
angle -- angle in radians by which to rotate
|
|
"""
|
|
qc = numpy.cos(angle / 2)
|
|
qs = numpy.sin(angle / 2)
|
|
qv = qs * numpy.array(axis)
|
|
return (qc, qv[0], qv[1], qv[2])
|
|
|
|
class Transform(object):
|
|
def __init__(self, mtx=None):
|
|
if mtx is None:
|
|
self.mtx = numpy.identity(4)
|
|
else:
|
|
self.mtx = mtx
|
|
def _compose(self, mtx2):
|
|
# Note pre-multiply. Earlier transforms are done first.
|
|
return Transform(mtx2 @ self.mtx)
|
|
def compose(self, xform):
|
|
return self._compose(xform.mtx)
|
|
def scale(self, *a, **kw):
|
|
return self._compose(mtx_scale(*a, **kw))
|
|
def translate(self, *a, **kw):
|
|
return self._compose(mtx_translate(*a, **kw))
|
|
def rotate(self, *a, **kw):
|
|
return self._compose(mtx_rotate(*a, **kw))
|
|
def reflect(self, *a, **kw):
|
|
return self._compose(mtx_reflect(*a, **kw))
|
|
def identity(self, *a, **kw):
|
|
return self._compose(mtx_identity(*a, **kw))
|
|
def apply_to(self, vs):
|
|
# Homogeneous coords, so append a column of ones. vh is then shape (N,4):
|
|
vh = numpy.hstack([vs, numpy.ones((vs.shape[0], 1), dtype=vs.dtype)])
|
|
# As we have row vectors, we're doing basically (A*x)^T=(x^T)*(A^T)
|
|
# hence transposing the matrix, while vectors are already transposed.
|
|
return (vh @ self.mtx.T)[:,0:3]
|
|
|
|
def mtx_scale(sx, sy=None, sz=None):
|
|
if sy is None:
|
|
sy = sx
|
|
if sz is None:
|
|
sz = sx
|
|
return numpy.array([
|
|
[sx, 0, 0, 0],
|
|
[0, sy, 0, 0],
|
|
[0, 0, sz, 0],
|
|
[0, 0, 0, 1],
|
|
])
|
|
|
|
def mtx_translate(x, y, z):
|
|
return numpy.array([
|
|
[1, 0, 0, x],
|
|
[0, 1, 0, y],
|
|
[0, 0, 1, z],
|
|
[0, 0, 0, 1],
|
|
])
|
|
|
|
def mtx_rotate(axis, angle):
|
|
q = rotation_quaternion(axis, angle)
|
|
return quat2mat(*q)
|
|
|
|
def mtx_reflect(axis):
|
|
# axis must be norm-1
|
|
axis = numpy.array(axis)
|
|
axis = axis / numpy.linalg.norm(axis)
|
|
a,b,c = axis[0], axis[1], axis[2]
|
|
return numpy.array([
|
|
[1-2*a*a, -2*a*b, -2*a*c, 0],
|
|
[-2*a*b, 1-2*b*b, -2*b*c, 0],
|
|
[-2*a*c, -2*b*c, 1-2*c*c, 0],
|
|
[0, 0, 0, 1],
|
|
])
|
|
|
|
def mtx_identity():
|
|
return numpy.eye(4)
|