{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import stl.mesh\n", "import numpy\n", "import trimesh\n", "import random\n", "\n", "import meshutil\n", "import examples" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#mesh = examples.ram_horn()\n", "#mesh = examples.twist()\n", "#mesh = examples.twist_nonlinear()" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "def gen_twisted_boundary(count=4, dx0=2, dz=0.2, ang=0.1):\n", " b = numpy.array([\n", " [0, 0, 0],\n", " [1, 0, 0],\n", " [1, 0, 1],\n", " [0, 0, 1],\n", " ], dtype=numpy.float64) - [0.5, 0, 0.5]\n", " # this function almost needs some sort of 'continuous'\n", " # property about it - that it is not tied to an integral\n", " # number of iterations of a transform, but can smoothly\n", " # generate it at any resolution.\n", " # but... can I do that? do all transforms accomodate that?\n", " # some should (rotation, translation), for others it makes\n", " # no sense (mirroring)\n", " #\n", " # Generate 'seed' transformations:\n", " xfs = [meshutil.Transform().translate(dx0, 0, 0).rotate([0,1,0], numpy.pi * 2 * i / count)\n", " for i in range(count)]\n", " # (we'll increment the transforms in xfs as we go)\n", " while True:\n", " xfs_new = []\n", " bs = []\n", " for i, xf in enumerate(xfs):\n", " # Generate a boundary from running transform:\n", " b_i = xf.apply_to(b)\n", " bs.append(b_i)\n", " # Increment transform i:\n", " xf2 = xf.rotate([0,1,0], ang)\n", " xfs_new.append(xf2)\n", " xfs = xfs_new\n", " yield bs" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "# This is to see how well it works to compose generators:\n", "def gen_inc_y(gen, dy=0.1):\n", " xf = meshutil.Transform()\n", " for bs in gen:\n", " bs2 = [xf.apply_to(b) for b in bs]\n", " yield bs2\n", " xf = xf.translate(0, dy, 0)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "# and to string together boundaries from a generator:\n", "def gen2mesh(gen, count):\n", " # Get first list of boundaries:\n", " bs_last = next(gen)\n", " # TODO: Begin and end with close_boundary_simple\n", " mesh = meshutil.FaceVertexMesh.Empty()\n", " for i,bs_cur in enumerate(gen):\n", " for j,b in enumerate(bs_cur):\n", " m = meshutil.join_boundary_simple(bs_last[j], b)\n", " mesh = mesh.concat(m)\n", " bs_last = bs_cur\n", " if i > count:\n", " break\n", " return mesh" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "gen = gen_inc_y(gen_twisted_boundary())\n", "mesh = gen2mesh(gen, 100)\n", "# TODO: Fix winding order" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# what even is this?\n", "\"\"\"\n", "dx0=2\n", "frames=100\n", "b = numpy.array([\n", " [0, 0, 0],\n", " [1, 0, 0],\n", " [1, 0, 1],\n", " [0, 0, 1],\n", "], dtype=numpy.float64) - [0.5, 0.5, 0]\n", "ang = -numpy.pi*2 / frames\n", "# negative because of winding order annoyance\n", "mesh = meshutil.FaceVertexMesh.Empty()\n", "xf = meshutil.Transform() \\\n", " .translate(dx0, 0, 0)\n", "b0 = xf.apply_to(b)\n", "for layer in range(frames):\n", " b_sub0 = xf.apply_to(b)\n", " incr = meshutil.Transform().rotate([0,0,1], ang)\n", " b_sub1 = xf.compose(incr).apply_to(b)\n", " m = meshutil.join_boundary_simple(b_sub0, b_sub1)\n", " mesh = mesh.concat(m)\n", " xf = xf.compose(incr)\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#mesh = torus_xy()" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "face_normals didn't match triangles, ignoring!\n" ] }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Work around some annoying-ass trimesh/threejs bug:\n", "wtf = meshutil.Transform().scale(0.1).translate(5,0,0)\n", "center = meshutil.Transform().translate(-0.5, -0.5, -0.5)\n", "base = meshutil.cube(open_xz=False).transform(center)\n", "base = base.transform(wtf)\n", "# to enable:\n", "mesh = mesh.concat(base)\n", "\n", "mesh_fname = \"twist.stl\"\n", "mesh.to_stl_mesh().save(mesh_fname)\n", "\n", "# TODO: Just use the mesh data directly (no sense in saving & re-loading)\n", "m = trimesh.load_mesh(mesh_fname)\n", "#m.show()\n", "scene = trimesh.Scene([m])\n", "scene.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 4 }