Commit libfive-subdiv-fail code

This commit is contained in:
Chris Hodapp 2021-07-17 10:51:56 -04:00
parent 070b1e46b8
commit af725d586c

View File

@ -0,0 +1,147 @@
#!/usr/bin/env python3
# (setq python-shell-interpreter "nix-shell" python-shell-interpreter-args " -I nixpkgs=/home/hodapp/nixpkgs -p python3Packages.libfive python3Packages.autograd python3Packages.numpy --command \"python3 -i\"")
import os, sys
os.environ["LIBFIVE_FRAMEWORK_DIR"]="/nix/store/gcxmz71b4i6bmsb1alafr4cqdnl19dn5-libfive-unstable-e93fef9d/lib/"
sys.path.insert(0, "/nix/store/gcxmz71b4i6bmsb1alafr4cqdnl19dn5-libfive-unstable-e93fef9d/lib/python3.8/site-packages/")
#import numpy as np
import autograd.numpy as np
from autograd import grad, elementwise_grad as egrad
# Until I build this in properly:
#import sys
#sys.path.insert(0, "/home/hodapp/source/libfive/libfive/bind/python")
from libfive.shape import shape
def sphere(r):
@shape
def f(x, y, z):
return (x*x + y*y + z*z) - r*r
return f
def spiral_vec(outer, inner, freq, phase, thresh):
def g(x,y,z):
d1 = outer*y - inner*np.sin(freq*x + phase)
d2 = outer*z - inner*np.cos(freq*x + phase)
return d1*d1 + d2*d2 - thresh*thresh
def f(pt):
x,y,z = [pt[..., i] for i in range(3)]
return g(x,y,z)
return f, g
def any_perpendicular(vecs):
# For 'vecs' of shape (..., 3), this returns an array of shape
# (..., 3) in which every corresponding vector is perpendicular
# (but nonzero). 'vecs' does not need to be normalized, and the
# returned vectors are not normalized.
x,y,z = [vecs[..., i] for i in range(3)]
a0 = np.zeros_like(x)
# The condition has the extra dimension added to make it (..., 1)
# so it broadcasts properly with the branches, which are (..., 3):
p = np.where((np.abs(z) < np.abs(x))[...,None],
np.stack((y, -x, a0), axis=-1),
np.stack((a0, -z, y), axis=-1))
return p
f_arr, f = spiral_vec(2.0, 0.4, 20.0, 0.0, 0.3)
fs = shape(f)
print(fs)
#s = sphere(1.5)
#print(s)
kw={
"xyz_min": (-0.5, -0.5, -0.5),
"xyz_max": (0.5, 0.5, 0.5),
"resolution": 400, # 20,
}
#fs.save_stl("spiral.stl", **kw)
print(f"letting libfive generate mesh...")
verts, tris = fs.get_mesh(**kw)
verts = np.array(verts, dtype=np.float32)
tris = np.array(tris, dtype=np.uint32)
print(f"Saving {len(verts)} vertices, {len(tris)} faces")
np.save("spiral_verts.npy", verts)
np.save("spiral_tris.npy", tris)
def intersect_implicit(surface_fn):
# surface_fn(x,y,z)=0 is an implicit surface. This returns a
# function f(s, t, pt, u, v) which - for f(s,t,...) = 0 is the
# implicit curve created by intersecting the surface with a plane
# passing through point 'pt' and with two perpendicular unit
# vectors 'u' and 'v' that lie on the plane.
def g(pts_2d, pt_center, u, v, **kw):
s,t = [pts_2d[..., i, None] for i in range(2)]
pt_3d = pt_center + s*u + t*v
return surface_fn(pt_3d, **kw)
return g
def implicit_curvature_2d(curve_fn):
# Returns a function which computes curvature of an implicit
# curve, curve_fn(s,t)=0. The resultant function takes two
# arguments as well.
#
# First derivatives:
_g1 = egrad(curve_fn)
# Second derivatives:
_g2s = egrad(lambda *a, **kw: _g1(*a, **kw)[...,0])
_g2t = egrad(lambda *a, **kw: _g1(*a, **kw)[...,1])
# Doing 'egrad' twice doesn't have the intended effect, so here I
# split up the first derivative manually.
def f(st, **kw):
g1 = _g1(st, **kw)
g2s = _g2s(st, **kw)
g2t = _g2t(st, **kw)
ds = g1[..., 0]
dt = g1[..., 1]
dss = g2s[..., 0]
dst = g2s[..., 1]
dtt = g2t[..., 1]
return (-dt*dt*dss + 2*ds*dt*dst - ds*ds*dtt) / ((ds*ds + dt*dt)**(3/2))
return f
print(f"Computing curvatures...")
# Shape (N, 3, 3). Final axis is (x,y,z).
tri_verts = verts[tris]
# Compute all 3 midpoints (over each edge):
v_pairs = [(tri_verts[:, i, :], tri_verts[:, (i+1)%3, :])
for i in range(3)]
print(f"midpoints")
tri_mids = np.stack([(vi+vj)/2 for vi,vj in v_pairs],
axis=1)
print(f"edge vectors")
# Compute normalized edge vectors:
diff = [vj-vi for vi,vj in v_pairs]
edge_vecs = np.stack([d/np.linalg.norm(d, axis=1, keepdims=True) for d in diff],
axis=1)
print(f"perpendiculars")
# Find perpendicular to all edge vectors:
v1 = any_perpendicular(edge_vecs)
v1 /= np.linalg.norm(v1, axis=-1, keepdims=True)
# and perpendiculars to both:
v2 = np.cross(edge_vecs, v1)
print(f"implicit curves")
isect_2d = intersect_implicit(f_arr)
curv_fn = implicit_curvature_2d(isect_2d)
print(f"gradients & curvature")
k = curv_fn(np.zeros((tri_mids.shape[0], 3, 2)), pt_center=tri_mids, u=v1, v=v2)
print(f"writing")
np.save("spiral_curvature.npy", k)
# for i,k_i in enumerate(k):
# for j in range(k.shape[1]):
# mid = tri_mids[i, j, :]
# k_ij = k[i,j]
# v1 = tris[i][j]
# v2 = tris[i][(j + 1) % 3]
# print(f"{i}: {v1} to {v2}, {k_ij:.3f}")